Two-Steps Hybrid Iterative Schemes With Errors For Generalized Equilibrium Problems And Common Fixed Point Problems^{*}

Seung-Hyun Kim[†], Mee-Kwang Kang[‡], Byung-Soo Lee[§]

Received 5 April 2015

Abstract

In this paper, we consider a two-steps hybrid iterative scheme with errors for generalized equilibrium problems and common fixed point problems, and prove the weak limits of sequences $\{x_n\}$ and $\{v_n\}$ obtained under the given scheme for N finite asymptotically k_i -strictly pseudo-contractive mappings $\{T_i\}_{i=1}^N$ and a firmly nonexpansive mapping S_r are the same and hence the point is a common fixed point of $\{T_i\}_{i=1}^N$ and S_r .

1 Introduction

The applications of equilibrium problems and fixed point theory to many branches have been well-known for a long time in nonlinear analysis including optimization theory, economics, etc. (see [2, 3, 5, 7, 9, 12]).

Recently there have been many researches on approximating convergence of fixed points under iteration schemes with errors concerning equilibrium problems and variational inequalities, etc. (see [2, 3, 4, 5, 9]).

On the other hand, Qin et al. [11] and Kumam et al. [6] considered equilibrium problems with fixed point problems under one-step hybrid iterative schemes and two-step hybrid iterative schemes, respectively, in Hilbert spaces.

Inspired by those results, we consider the following two-step hybrid iterative scheme with errors for generalized equilibrium problems and common fixed point problems, and obtain a result that the weak limits of sequences $\{x_n\}$ and $\{v_n\}$ obtained under the given scheme for N finite asymptotically k_i -strictly pseudo-contractive mappings $\{T_i\}_{i=1}^N$ and a firmly nonexpansive mapping S_r are the same and that the same point is a common fixed point of $\{T_i\}_{i=1}^N$ and S_r .

ALGORITHM 1.1. Let C be a closed convex subset of a Hilbert space H, T_i, ψ : $C \to C$ $(i = 1, 2, \dots, N)$ be mappings and $\phi : C \times C \to \mathbb{R}$ be a bifunction. For any

^{*}Mathematics Subject Classifications: 47H09, 47H10.

[†]Department of Mathematics, Kyungsung University, Busan 608-736, Korea

[‡]Corresponding author. Department of Mathematics, Dongeui University, Busan 614-714, Korea

[§]Department of Mathematics, Kyungsung University, Busan 608-736, Korea

 $x_0 \in C$, let $\{x_n\}$ and $\{v_n\}$ be sequences generated by

$$\begin{cases} \phi(v_{n-1}, y) + \langle \psi v_{n-1}, y - v_{n-1} \rangle + \frac{1}{r_{n-1}} \langle y - v_{n-1}, v_{n-1} - x_{n-1} \rangle \ge 0, \\ x_n = a_{n-1} v_{n-1} + b_{n-1} T_{i(n)}^{h(n)} v_{n-1} + c_{n-1} u_{n-1}, \end{cases}$$
(1)

for all $y \in C$ and $n \in \mathbb{N}$, where $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ are sequences in [0, 1) such that $a_n + b_n + c_n = 1$, $a_n \geq k + \varepsilon$, $b_n \geq \varepsilon$ for some $\varepsilon \in (0, 1)$, $\sum_{n=1}^{\infty} c_n < \infty$, $\{u_n\}$ is a bounded sequence in C, $\{r_n\}$ is a sequence in $(0, \infty)$ such that $\lim_{n \to \infty} \inf r_n > 0$ and $i(n) \equiv n \pmod{N}$, $h(n) = \lceil \frac{n}{N} \rceil$ with a ceiling function $\lceil \cdot \rceil$.

REMARK 1.1. (a) Putting $\psi \equiv 0$ in (1), we obtain an algorithm

$$\begin{cases} \phi(v_{n-1}, y) + \frac{1}{r_{n-1}} \langle y - v_{n-1}, v_{n-1} - x_{n-1} \rangle \ge 0 & \text{for all } y \in C, \\ x_n = a_{n-1} v_{n-1} + b_{n-1} T_{i(n)}^{h(n)} v_{n-1} + c_{n-1} u_{n-1} & \text{for each } n \in \mathbb{N}. \end{cases}$$
(2)

(b) Putting $c_n = 0$ for all $n \in \mathbb{N}$ in (2), we obtain the algorithm considered in [6]

$$\begin{cases} \phi(v_{n-1}, y) + \frac{1}{r_{n-1}} \langle y - v_{n-1}, v_{n-1} - x_{n-1} \rangle \ge 0 & \text{for all } y \in C, \\ x_n = a_{n-1} v_{n-1} + (1 - a_{n-1}) T_{i(n)}^{h(n)} v_{n-1} & \text{or each } n \in \mathbb{N}. \end{cases}$$
(3)

(c) Putting $\phi \equiv 0$ and $v_n = x_n$ $(n \in \mathbb{N})$ in (3), we obtain the algorithm considered in [11]

$$x_n = a_{n-1}x_{n-1} + (1 - a_{n-1})T_{i(n)}^{h(n)}x_{n-1} \text{ for each } n \in \mathbb{N}.$$
 (4)

2 Preliminaries

First of all, we recall some definitions and results needed in the main results.

DEFINITION 2.1. Let $\phi : C \times C \to \mathbb{R}$ be a function and $\psi : C \to C$ be a nonlinear mapping. (a) ϕ is said to be monotone if $\phi(x, y) + \phi(y, x) \leq 0$ for all $x, y \in C$. (b) ψ is said to be monotone if $\langle \psi x - \psi y, x - y \rangle \geq 0$ for all $x, y \in C$.

DEFINITION 2.2. A mapping $T : C \to C$ is asymptotically k-strictly pseudocontractive if there exist $k \in [0, 1)$ and a sequence $\{k_n\} \subset [1, \infty)$ with $\lim_{n \to \infty} k_n = 1$ such that

 $||T^n x - T^n y||^2 \le k_n^2 ||x - y||^2 + k ||(I - T^n)x - (I - T^n)y||^2 \text{ for all } x, y \in C \text{ and } n \in \mathbb{N}.$

LEMMA 2.1 ([7, 10]). Let H be a real Hilbert space. Then we have the following identities:

(i) $||x - y||^2 = ||x||^2 - ||y||^2 - 2\langle x - y, y \rangle$ for all $x, y \in H$.

(ii) For all $x, y \in H$ and $a, b, c \in [0, 1]$ with a + b + c = 1,

$$|ax + by + cz||^{2} = a||x||^{2} + b||y||^{2} + c||z||^{2} - ab||x - y||^{2} - bc||y - z||^{2} - ca||z - x||^{2}$$

(iii) If $\{x_n\}$ is a sequence in H weakly converging to z, then

$$\lim_{n \to \infty} \sup \|x_n - y\|^2 = \lim_{n \to \infty} \sup \|x_n - z\|^2 + \|z - y\|^2 \text{ for all } y \in H.$$

LEMMA 2.2 ([10]). Let $\{a_n\}$, $\{c_n\}$ and $\{\delta_n\}$ be nonnegative real sequences satisfying the condition $a_{n+1} \leq (1+\delta_n)a_n + c_n$ for each $n \in \mathbb{N}$. If

$$\sum_{n=1}^{\infty} \delta_n < \infty \text{ and } \sum_{n=1}^{\infty} c_n < \infty,$$

then $\lim_{n \to \infty} a_n$ exists.

3 Main Results

We assume that the mapping $\phi: C \times C \to \mathbb{R}$ satisfies the following conditions:

- (i) $\phi(x, x) = 0$ for all $x \in C$;
- (ii) ϕ is monotone;
- (iii) ϕ is upper hemi-continuous in the first variable;

(iv) ϕ is convex and lower semi-continuous in the second variable.

We have the following theorems.

THEOREM 3.1. Let C be a closed convex subset of a Hilbert space H. Let $\psi: C \to C$ be a monotone nonlinear mapping. For r > 0 and $x \in H$, define a mapping $S_r: H \to 2^C$ by

$$S_r x = \left\{ z \in C : \phi(z, y) + \langle \psi z, y - z \rangle + \frac{1}{r} \langle y - z, z - x \rangle \ge 0 \text{ for all } y \in C \right\}.$$

Then the following statements (i)–(iii) hold.

- (i) $S_r x$ is a singleton for each $x \in H$.
- (ii) S_r is firmly nonexpansive, i.e.,

$$||S_r x - S_r y||^2 \le \langle S_r x - S_r y, x - y \rangle \text{ for } x, y \in H.$$

(iii) The set $F(S_r)$ of all fixed points of S_r is a closed and convex subset of C as a solution set of the following equilibrium problem considered in [9]: finding $x \in C$ such that $\phi(x, y) + \langle \psi x, y - x \rangle \geq 0$ for all $y \in C$.

278

Kim et al.

PROOF. (i) We put $\zeta(x, y) = \phi(x, y) + \langle \psi x, y - x \rangle$ for all $x, y \in C$. By the conditions of ϕ and [1, Theorem 1], we see that $S_r x \neq \emptyset$ for any $x \in C$. Next, we show that $S_r x$ is a singleton for $x \in C$. Suppose that $z_1, z_2 \in S_r x$. Then

$$\begin{cases} \phi(z_1, y) + \langle \psi z_1, y - z_1 \rangle + \frac{1}{r} \langle y - z_1, z_1 - x \rangle \ge 0 & \text{for } y \in C, \\ \phi(z_2, y) + \langle \psi z_2, y - z_2 \rangle + \frac{1}{r} \langle y - z_2, z_2 - x \rangle \ge 0 & \text{for } y \in C. \end{cases}$$

$$(5)$$

Putting $y = z_2$ in the first inequality and $y = z_1$ in the second inequality (5), respectively and adding them, we have

$$\phi(z_1, z_2) + \phi(z_2, z_1) + \langle \psi z_1 - \psi z_2, z_2 - z_1 \rangle \ge \frac{1}{r} ||z_1 - z_2||^2$$

Since $\phi(z_1, z_2) + \phi(z_2, z_1) \leq 0$ and $\langle \psi z_1 - \psi z_2, z_2 - z_1 \rangle \leq 0$, we have $z_1 = z_2$. So we prove statement (i).

(ii) Let $z = S_r x$ and $z' = S_r x'$. Then

$$\begin{cases} \phi(z,z') + \langle \psi z, z' - z \rangle + \frac{1}{r} \langle z' - z, z - x \rangle \ge 0, \\ \phi(z',z) + \langle \psi z', z - z' \rangle + \frac{1}{r} \langle z - z', z' - x' \rangle \ge 0. \end{cases}$$

Adding two inequalities and applying the monotonicity of ϕ and ψ , we have

$$\langle S_r x - S_r x', x - x' \rangle = \langle z - z', x - x' \rangle \ge ||z - z'||^2 = ||S_r x - S_r x'||^2$$

Hence, S_r is a firmly nonexpansive mapping. So we prove statement (ii).

(iii) If $x \in F(S_r)$, then

$$\phi(x,y) + \langle \psi x, y - x \rangle = \phi(x,y) + \langle \psi x, y - x \rangle + \frac{1}{r} \langle y - x, x - x \rangle \ge 0$$

for all $y \in C$. So x is a solution of the equilibrium problem in [9]. Next, let $\{x_n\}$ be a convergent sequence in $F(S_r)$ with a limit $x \in H$. Since $F(S_r) \subset C$ and C is closed, we have $x \in C$. Also, S_r is continuous. Then we have

$$x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} S_r x_n = S_r x_n$$

It means that $x \in F(S_r)$, that is, $F(S_r)$ is closed.

To show that $F(S_r)$ is convex, we let $z = \lambda x + (1 - \lambda)y$ for $x, y \in F(S_r)$ and $\lambda \in [0, 1]$. By Lemma 2.1(ii) and the nonexpansiveness of S_r , we have

$$\begin{aligned} \|z - S_r z\|^2 &= \|\lambda (x - S_r z) + (1 - \lambda)(y - S_r z)\|^2 \\ &= \lambda \|x - S_r z\|^2 + (1 - \lambda) \|y - S_r z\|^2 - \lambda (1 - \lambda) \|x - y\|^2 \\ &\leq \lambda \|x - z\|^2 + (1 - \lambda) \|y - z\|^2 - \lambda (1 - \lambda) \|x - y\|^2 \\ &= \lambda \|x - (\lambda x + (1 - \lambda)y)\|^2 + (1 - \lambda) \|y - (\lambda x + (1 - \lambda)y)\|^2 \\ &- \lambda (1 - \lambda) \|x - y\|^2 \\ &= \lambda (1 - \lambda)^2 \|x - y\|^2 + (1 - \lambda) \lambda^2 \|x - y\|^2 - \lambda (1 - \lambda) \|x - y\|^2 = 0. \end{aligned}$$

Hence, $S_r z = z$ and $z \in F(S_r)$. Therefore $F(S_r)$ is convex. So we prove statement (iii).

The proof of Theorem 3.1 is complete.

REMARK 3.1. By putting $\psi \equiv 0$ in Theorem 3.1, we obtain [4, Lemma 2.12].

Next, we consider our main result.

THEOREM 3.2. Assume that the mappings $T_i : C \to C$ for $i = 1, \dots, N$ satisfy the following conditions:

- (i) C is a closed convex subset of a Hilbert space H;
- (ii) T_i is asymptotically k_i -strictly pseudo-contractive for $k_i \in [0, 1), i = 1, 2, \dots, N$ and for each $i \in \{1, 2, \dots, N\}, \{k_{n,i}\}$ is a sequence in $[1, \infty)$ such that $\sum_{n=1}^{\infty} (k_{n,i}^2 - 1) < \infty$;
- (iii) $k = \max\{k_i : 1 \le i \le N\}$ and $k'_n = \max\{k_{n,i} : 1 \le i \le N\}$ for each $n \in \mathbb{N}$.

Let $\psi: C \to C$ be a monotone nonlinear mapping with

$$F := \left(\bigcap_{i=1}^{N} F(T_i)\right) \bigcap F(S_r) \neq \emptyset$$

For any $x_0 \in C$, let $\{x_n\}$ and $\{v_n\}$ be sequences generated by Algorithm 1.1. Then $\{x_n\}$ and $\{v_n\}$ converge weakly to the unique same element of F.

PROOF. Let $p \in F$. By Algorithm 1.1 and Theorem 3.1(i), we see that $v_{n-1} = S_{r_{n-1}}x_{n-1}$ and

$$||v_{n-1} - p|| = ||S_{r_{n-1}}x_{n-1} - S_{r_{n-1}}p|| \le ||x_{n-1} - p||$$

for each $n \in \mathbb{N}$. By Algorithm 1.1 and Lemma 2.1(ii), we have

$$\begin{aligned} \|x_n - p\|^2 &= \left\| a_{n-1}(v_{n-1} - p) + b_{n-1}(T_{i(n)}^{h(n)}v_{n-1} - p) + c_{n-1}(u_{n-1} - p) \right\|^2 \\ &\leq a_{n-1} \|v_{n-1} - p\|^2 + b_{n-1} \left\| T_{i(n)}^{h(n)}v_{n-1} - T_{i(n)}^{h(n)}p \right\|^2 + c_{n-1} \|u_{n-1} - p\|^2 \\ &\quad -a_{n-1}b_{n-1} \left\| T_{i(n)}^{h(n)}v_{n-1} - v_{n-1} \right\|^2 \\ &\leq a_{n-1} \|v_{n-1} - p\|^2 + b_{n-1} \left\{ (k_{h(n)}')^2 \|v_{n-1} - p\|^2 + k \left\| (I - T_{i(n)}^{h(n)})v_{n-1} \right\| \\ &\quad - (I - T_{i(n)}^{h(n)})p \right\|^2 \right\} + c_{n-1} \|u_{n-1} - p\|^2 - a_{n-1}b_{n-1} \left\| T_{i(n)}^{h(n)}v_{n-1} - v_{n-1} \right\|^2 \\ &\leq (k_{h(n)}')^2 \|v_{n-1} - p\|^2 - b_{n-1}(a_{n-1} - k) \left\| T_{i(n)}^{h(n)}v_{n-1} - v_{n-1} \right\|^2 \end{aligned}$$

Kim et al.

$$+c_{n-1}\|u_{n-1} - p\|^2 \tag{6}$$

$$\leq \left[1 + ((k_{h(n)}^{'})^{2} - 1)\right] \|x_{n-1} - p\|^{2} + c_{n-1}\|u_{n-1} - p\|^{2}.$$
(7)

Since $\sum_{n=1}^{\infty} (k_{n,i}^2 - 1) < \infty$, and by Lemma 2.2, we see that $\lim_{n \to \infty} ||x_n - p||$ exists. On the other hand, since $a_n \ge k + \varepsilon$ and $b_n \ge \varepsilon$ for $n \in \mathbb{N}$ and some $\varepsilon \in (0, 1)$, we have

$$(k_{h(n)})^{2} \|x_{n-1} - p\|^{2} - \|x_{n} - p\|^{2} + c_{n-1} \|u_{n-1} - p\|^{2}$$

$$\geq b_{n-1}(a_{n-1} - k) \|T_{i(n)}^{h(n)}v_{n-1} - v_{n-1}\|^{2}$$

$$\geq \varepsilon^{2} \|T_{i(n)}^{h(n)}v_{n-1} - v_{n-1}\|^{2}.$$

Since $\lim_{n\to\infty} k_{h(n)}' = 1$ and $\lim_{n\to\infty} c_n = 0$, taking the limits as $n\to\infty$ in the above inequality, we have

$$\lim_{n \to \infty} \left\| T_{i(n)}^{h(n)} v_{n-1} - v_{n-1} \right\|^2 = 0.$$
(8)

Observe that

$$\begin{aligned} \|x_n - v_{n-1}\| &= \left\| a_{n-1}v_{n-1} + b_{n-1}T_{i(n)}^{h(n)}v_{n-1} + c_{n-1}u_{n-1} - v_{n-1} \right\| \\ &= \left\| -(1 - a_{n-1}) \left(v_{n-1} - T_{i(n)}^{h(n)}v_{n-1} \right) + c_{n-1} \left(u_{n-1} - T_{i(n)}^{h(n)}v_{n-1} \right) \right\| \\ &\leq (1 - a_{n-1}) \left\| v_{n-1} - T_{i(n)}^{h(n)}v_{n-1} \right\| + c_{n-1} \left\| u_{n-1} - T_{i(n)}^{h(n)}v_{n-1} \right\|. \end{aligned}$$

By (8), we see that

$$\lim_{n \to \infty} \|x_n - v_{n-1}\| = 0.$$
(9)

By the firm nonexpansiveness of $S_{r_{n-1}}$ and Lemma 2.1(i), we have

$$\begin{aligned} \|v_{n-1} - p\|^2 &= \|S_{r_{n-1}}x_{n-1} - S_{r_{n-1}}p\|^2 \le \langle S_{r_{n-1}}x_{n-1} - S_{r_{n-1}}p, x_{n-1} - p \rangle \\ &= \langle v_{n-1} - p, x_{n-1} - p \rangle = -\langle -(x_{n-1} - v_{n-1}) - (x_{n-1} - p), x_{n-1} - p \rangle \\ &= -\frac{1}{2} \left(\|x_{n-1} - v_{n-1}\|^2 - \|x_{n-1} - p\|^2 - \|v_{n-1} - p\|^2 \right), \end{aligned}$$

and hence

$$||v_{n-1} - p||^2 \le ||x_{n-1} - p||^2 - ||x_{n-1} - v_{n-1}||^2.$$

Applying this inequality to (6), we have

$$\|x_n - p\|^2 \le \left(k'_{h(n)}\right)^2 \left(\|x_{n-1} - p\|^2 - \|x_{n-1} - v_{n-1}\|^2\right) + c_{n-1}\|u_{n-1} - p\|^2.$$

Since $\lim_{n \to \infty} ||x_n - p||$ exists and $\lim_{n \to \infty} k'_{h(n)} = 1$, we see that

$$\lim_{n \to \infty} \|x_{n-1} - v_{n-1}\| = 0.$$
(10)

281

Applying (9) and (10) to the triangle inequality, we have

$$||v_n - v_{n-1}|| \le ||v_n - x_n|| + ||x_n - v_{n-1}|| \to 0 \text{ as } n \to \infty,$$

which implies that

$$\lim_{n \to \infty} \|v_n - v_{n+j}\| = 0 \text{ for } j \in \{1, \cdots, N\}.$$
 (11)

Similarly, applying (10) and (11) to the triangle inequality, we obtain

$$||x_n - x_{n-1}|| \le ||x_n - v_n|| + ||v_n - v_{n-1}|| + ||v_{n-1} - x_{n-1}|| \to 0 \text{ as } n \to \infty,$$

which implies that $\lim_{n \to \infty} ||x_n - x_{n+j}|| = 0$ for $j \in \{1, \dots, N\}$. On the other hand,

$$\begin{aligned} \|v_{n-1} - T_n v_{n-1}\| &\leq \|v_{n-1} - T_{i(n)}^{h(n)} v_{n-1}\| + \|T_{i(n)} T_{i(n)}^{h(n)-1} v_{n-1} - T_{i(n)} v_{n-1}\| \\ &\leq \|v_{n-1} - T_{i(n)}^{h(n)} v_{n-1}\| + L\left(\|T_{i(n)}^{h(n)-1} v_{n-1} - T_{i(n-N)}^{h(n)-1} v_{n-N}\| \right) \\ &+ \|T_{i(n-N)}^{h(n)-1} v_{n-N} - v_{n-N-1}\| + \|v_{n-N-1} - v_{n-1}\|\right), \tag{12}$$

where

$$L = \sup\left\{\frac{k + \sqrt{1 + (k_n^2 - 1)(1 - k)}}{1 - k} : n \in \mathbb{N}\right\}.$$

Since, for each n > N, n = (h(n)-1)N + i(n), i(n-N) = i(n) and h(n-N) = h(n)-1,

$$\left\| T_{i(n)}^{h(n)-1} v_{n-1} - T_{i(n-N)}^{h(n)-1} v_{n-N} \right\| = \left\| T_{i(n)}^{h(n)-1} v_{n-1} - T_{i(n)}^{h(n)-1} v_{n-N} \right\|$$

$$\leq L \| v_{n-1} - v_{n-N} \|$$
(13)

and

$$\left\| T_{i(n-N)}^{h(n)-1} v_{n-N} - v_{n-N-1} \right\|$$

$$\leq \left\| T_{i(n-N)}^{h(n-N)} v_{n-N} - T_{i(n-N)}^{h(n-N)} v_{n-N-1} \right\| + \left\| T_{i(n-N)}^{h(n-N)} v_{n-N-1} - v_{n-N-1} \right\|$$

$$\leq L \cdot \left\| v_{n-N} - v_{n-N-1} \right\| + \left\| T_{i(n-N)}^{h(n-N)} v_{n-N-1} - v_{n-N-1} \right\|.$$

$$(14)$$

So by (12)–(14), we see that

$$\|v_{n-1} - T_n v_{n-1}\|$$

$$\leq \|v_{n-1} - T_{i(n)}^{h(n)} v_{n-1}\| + L \cdot \left\{ \|T_{i(n)}^{h(n)-1} v_{n-1} - T_{i(n-N)}^{h(n)-1} v_{n-N}\| + \|T_{i(n-N)}^{h(n)-1} v_{n-N} - v_{n-N-1}\| + \|v_{n-N-1} - v_{n-1}\| \right\}$$

$$\leq \|v_{n-1} - T_{i(n)}^{h(n)} v_{n-1}\| + L \cdot \left\{ L \|v_{n-1} - v_{n-N}\| + L \cdot \|v_{n-N} - v_{n-N-1}\| + \|T_{i(n-N)}^{h(n-N)} v_{n-N-1} - v_{n-N-1}\| + \|v_{n-N-1} - v_{n-1}\| \right\}.$$

By (8) and (11), we have that $\lim_{n \to \infty} ||v_{n-1} - T_n v_{n-1}|| = 0$. Since

$$\begin{aligned} \|v_n - T_n v_n\| &\leq \|v_n - v_{n-1}\| + \|v_{n-1} - T_n v_{n-1}\| + \|T_n v_{n-1} - T_n v_n\| \\ &\leq (1+L) \cdot \|v_n - v_{n-1}\| + \|v_{n-1} - T_n v_{n-1}\| \to 0 \text{ as } n \to \infty. \end{aligned}$$

for any $j = 1, \dots, N$, we have

$$\begin{aligned} \|v_n - T_{n+j}v_n\| &\leq \|v_n - v_{n+j}\| + \|v_{n+j} - T_{n+j}v_{n+j}\| + \|T_{n+j}v_{n+j} - T_{n+j}v_n\| \\ &\leq (1+L) \cdot \|v_n - v_{n+j}\| + \|v_{n+j} - T_{n+j}v_{n+j}\| \to 0 \text{ as } n \to \infty, \end{aligned}$$

which gives that $\lim_{n\to\infty} ||v_n - T_l v_n|| = 0$ for $l \in \{1, \dots, N\}$. Moreover, for each $l \in \{1, \dots, N\}$, we have

$$\begin{aligned} \|x_n - T_l x_n\| &\leq \|x_n - v_n\| + \|v_n - T_l v_n\| + \|T_l v_n - T_l x_n\| \\ &\leq (1+L) \cdot \|x_n - v_n\| + \|v_n - T_l v_n\| \to 0 \text{ as } n \to \infty \end{aligned}$$

Put

$$W(x_n) = \{ x \in H : x_{n_i} \rightharpoonup x \text{ for some subsequence } \{x_{n_i}\} \text{ of } \{x_n\} \}$$

Then $W(x_n) \neq \emptyset$ by the fact that $\{x_n\}$ is bounded in H. Next, we claim that $W(x_n) \subset F$. Let $w \in W(x_n)$ be an arbitrary element. Then there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ converging weakly to w. Since $\lim_{n \to \infty} ||x_n - v_n|| = 0$, we can obtain that $v_{n_i} \rightharpoonup w$ as $i \to \infty$. By the fact that $\lim_{n \to \infty} ||v_n - T_l v_n|| = 0$, $T_l v_{n_i} \to w$ for $l \in \{1, \dots, N\}$. Now, we show that w is a fixed point of S_r . Since $v_n = T_r v_n$ for each $n \in \mathbb{N}$, we have

$$\phi(v_n, y) + \langle \psi v_n, y - v_n \rangle + \frac{1}{r_n} \langle y - v_n, v_n - x_n \rangle \ge 0 \text{ for all } y \in C \text{ and } n \in \mathbb{N}.$$

By the monotonicity of ϕ , we have

$$\langle y - v_{n_i}, \frac{v_{n_i} - x_{n_i}}{r_{n_i}} \rangle \ge \phi(y, v_{n_i}) + \langle \psi v_{n_i}, v_{n_i} - y \rangle \text{ for } i \in \mathbb{N}.$$

Since $\frac{v_{n_i} - x_{n_i}}{r_{n_i}} \to 0$ and $v_{n_i} \rightharpoonup w$ as $i \to \infty$, and by the condition (iv) of ϕ , we have

$$\phi(y,w) + \langle \psi w, w - y \rangle \le 0 \text{ for } y \in C.$$

By the conditions (i) and (iv) of ϕ , we see that

$$0 = \phi(y_t, y_t) \le t\phi(y_t, y) + (1-t)\phi(y_t, w)$$

$$\le t\phi(y_t, y) + (1-t)\langle\psi w, y_t - w\rangle = t\phi(y_t, y) + (1-t)t\langle\psi w, y - w\rangle$$

$$\le \phi(y_t, y) + (1-t)\langle\psi w, y - w\rangle,$$

where $t \in (0, 1]$, $y \in C$, and $y_t = ty + (1 - t)w$. By the condition (iii) of ϕ ,

$$0 \le \phi(w, y) + \langle \psi w, y - w \rangle$$
 for all $y \in C$,

which shows that $w \in F(S_r)$. Moreover, $w \in \bigcap_{l=1}^{N} F(T_l)$. In fact, if $w \notin F(T_l)$ for some $l \in \{1, \dots, N\}$, then from the Opial's condition and the fact that $\lim_{n \to \infty} ||x_n - T_l x_n|| = 0$,

$$\lim_{i \to \infty} \inf \|x_{n_i} - w\| < \lim_{i \to \infty} \inf \|x_{n_i} - T_l w\| \le \lim_{i \to \infty} \inf \{ \|x_{n_i} - T_l x_{n_i}\| + \|T_l x_{n_i} - T_l w\| \}$$

$$\le \lim_{i \to \infty} \inf L \cdot \|x_{n_i} - w\|,$$

which derives a contradiction. Consequently, we have

$$w \in F = \left(\bigcap_{l=1}^{N} F(T_l)\right) \bigcap F(S_r).$$

Finally, we show that $\{x_n\}$ and $\{v_n\}$ converge weakly to the unique same element of F. Indeed, it is sufficient to show that $W(x_n)$ is a singleton. We take any $w_1, w_2 \in$ $W(x_n)$ and let $\{x_{n_i}\}$ and $\{x_{n_j}\}$ be subsequences of $\{x_n\}$ such that $x_{n_i} \rightharpoonup w_1$ and $x_{n_j} \rightharpoonup w_2$. Since $\lim_{n \to \infty} ||x_n - p||$ exists for each $p \in F$ and $w_1, w_2 \in F$, by Lemma 2.1(iii), we obtain

$$\limsup_{n \to \infty} \|x_n - w_1\|^2 = \limsup_{j \to \infty} \|x_{n_j} - w_1\|^2 = \limsup_{j \to \infty} \|x_{n_j} - w_2\|^2 + \|w_2 - w_1\|^2$$
$$= \limsup_{i \to \infty} \|x_{n_i} - w_2\|^2 + \|w_2 - w_1\|^2$$
$$= \limsup_{i \to \infty} \|x_{n_i} - w_1\|^2 + 2\|w_2 - w_1\|^2$$
$$= \limsup_{n \to \infty} \|x_n - w_1\|^2 + 2\|w_2 - w_1\|^2.$$

Hence $w_1 = w_2$, which shows that $W(x_n)$ is a singleton. The proof of Theorem 3.2 is complete.

We have the following theorems in [6, 11] as corollaries of Theorem 3.2.

THEOREM 3.3 ([6]). Assume that the conditions (i)–(iii) in Theorem 3.2 hold and that ϕ satisfies

$$F := \left(\bigcap_{i=1}^{N} F(T_i)\right) \bigcap S(\phi) \neq \emptyset.$$

For any $x_0 \in C$, let $\{x_n\}$ and $\{v_n\}$ be sequences generated by (3), where $n = (h - 1)N + i(n \ge 1)$, $i = i(n) \in \{1, 2, \dots, N\}$, $h = h(n) \ge 1$ is a positive integer and $h(n) \to \infty$ as $n \to \infty$. Let $\{a_n\}$ and $\{r_n\}$ be sequences satisfying $\{a_n\} \subset [\alpha, \beta]$ for some $\alpha, \beta \in (k, 1), \{r_n\} \subset (0, \infty)$ and $\lim_{n \to \infty} \inf r_n > 0$. Then $\{x_n\}$ and $\{v_n\}$ converge weakly to an element of F.

THEOREM 3.4 ([11]). Assume that the conditions (i)–(iii) in Theorem 3.2 hold and $\langle N \rangle$

$$F := \left(\bigcap_{i=1}^{N} F(T_i)\right) \neq \emptyset.$$

For any $x_0 \in C$, let $\{x_n\}$ be a sequence generated by (4), where $\{a_n\}$ is a sequence in (0,1) such that $k + \varepsilon \leq a_n \leq 1 - \varepsilon$ for some $\varepsilon \in (0,1)$, $n = (h-1)N + i(n \geq 1)$, where $i = i(n) \in \{1, 2, \dots, N\}$, $h = h(n) \geq 1$ is a positive integer and $h(n) \to \infty$ as $n \to \infty$. Then $\{x_n\}$ converges weakly to an element of F.

REMARK 3.2. Our result is a weak convergence under Algorithm 1.1 for a finite family of asymptotically k_i -strictly pseudo-contractive mappings in Hilbert spaces. The convergences, mappings and spaces need to be more weakened, for examples, strongly convergences, asymptotically nonexpansive mappings and CAT(0)-spaces, respectively. Till now, many kinds of strong convergence results are well-known, but the weak convergence results are few. So, we suggest the following open problem.

Open problem. Do $\{x_n\}$ and $\{v_n\}$ weakly converge for a finite family of asymptotically nonexpansive mappings with Algorithm 1.1 under suitable conditions?

Acknowledgment. This work was supported by Dong-eui University Foundation Grant (2013).

References

- E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63(1994), 123–145.
- [2] S. S. Chang, H. W. J. Lee and C. K. Chan, A new hybrid method for solving a generalized equilibrium problem, fixed point problem and variational inequality problem with application to optimization, Nonlinear Anal., 70(2009), 3307–3310.
- [3] S. S. Chang, H. W. J. Lee and C. K. Chan, A new method for solving equilibrium problem solving a variational iequality problem and obtaining common fixed points in Banach spaces, with applications, Nonlinear Anal., 73(2010), 2260–2270.
- P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6(2005), 117–136.
- [5] S. H. Kim and B. S. Lee, Weak convergence of a hybrid iterative scheme with errors for equilibrium problems and common fixed point problems, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 21(2014), 195–206.
- [6] P. Kumam, N. Petrot and R. Wangkeeree, A hybrid iterative scheme for equilibrium problems and fixed point problems of asymptotically k-strict pseudocontractions, J. Comp. Appl. Math., 233(2010), 2013–2026.
- [7] G. Marino and H. K. Xu, Weak and strong convergence theorems for strict pseudocontractions in Hilbert space, J. Math. Anal. Appl., 329(2007), 336–346.
- [8] A. Moudafi, Mixed equilibrium problems: Sensitivity analysis and algorithm aspect, Comp. Math. Appl., 44(2002), 1099–1108.

- [9] A. Moudafi and M. Théra, Proximal and Dynamical Approaches to Equilibrium Problems, Lecture Notes in Economics and Mathematical Systems, vol. 477, Springer-Verlag, New York, 1999.
- [10] M. O. Osilike and D. I. Igbokwe, Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations, Comput. Math. Appl., 40(2000), 559–567.
- [11] X. Qin, Y. J. Cho, S. M. Kang and M. Shang, A hybrid iterative scheme for asymptotically k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 70(2009), 1902–1911.
- [12] Y. Tanaka, On Constructive versions of the tychonoff and Schauder fixed point theorems, Appl. Math. E-Notes, 11(2011), 125–132.