Two-Steps Hybrid Iterative Schemes With Errors For Generalized Equilibrium Problems And Common Fixed Point Problems*

Seung-Hyun Kim ${ }^{\dagger}$, Mee-Kwang Kang ${ }^{\ddagger}$, Byung-Soo Lee ${ }^{\S}$

Received 5 April 2015

Abstract

In this paper, we consider a two-steps hybrid iterative scheme with errors for generalized equilibrium problems and common fixed point problems, and prove the weak limits of sequences $\left\{x_{n}\right\}$ and $\left\{v_{n}\right\}$ obtained under the given scheme for N finite asymptotically k_{i}-strictly pseudo-contractive mappings $\left\{T_{i}\right\}_{i=1}^{N}$ and a firmly nonexpansive mapping S_{r} are the same and hence the point is a common fixed point of $\left\{T_{i}\right\}_{i=1}^{N}$ and S_{r}.

1 Introduction

The applications of equilibrium problems and fixed point theory to many branches have been well-known for a long time in nonlinear analysis including optimization theory, economics, etc. (see $[2,3,5,7,9,12]$).

Recently there have been many researches on approximating convergence of fixed points under iteration schemes with errors concerning equilibrium problems and variational inequalities, etc. (see $[2,3,4,5,9]$).

On the other hand, Qin et al. [11] and Kumam et al. [6] considered equilibrium problems with fixed point problems under one-step hybrid iterative schemes and twostep hybrid iterative schemes, respectively, in Hilbert spaces.

Inspired by those results, we consider the following two-step hybrid iterative scheme with errors for generalized equilibrium problems and common fixed point problems, and obtain a result that the weak limits of sequences $\left\{x_{n}\right\}$ and $\left\{v_{n}\right\}$ obtained under the given scheme for N finite asymptotically k_{i}-strictly pseudo-contractive mappings $\left\{T_{i}\right\}_{i=1}^{N}$ and a firmly nonexpansive mapping S_{r} are the same and that the same point is a common fixed point of $\left\{T_{i}\right\}_{i=1}^{N}$ and S_{r}.

ALGORITHM 1.1. Let C be a closed convex subset of a Hilbert space H, T_{i}, ψ : $C \rightarrow C(i=1,2, \cdots, N)$ be mappings and $\phi: C \times C \rightarrow \mathbb{R}$ be a bifunction. For any

[^0]$x_{0} \in C$, let $\left\{x_{n}\right\}$ and $\left\{v_{n}\right\}$ be sequences generated by
\[

\left\{$$
\begin{array}{l}
\phi\left(v_{n-1}, y\right)+\left\langle\psi v_{n-1}, y-v_{n-1}\right\rangle+\frac{1}{r_{n-1}}\left\langle y-v_{n-1}, v_{n-1}-x_{n-1}\right\rangle \geq 0 \tag{1}\\
x_{n}=a_{n-1} v_{n-1}+b_{n-1} T_{i(n)}^{h(n)} v_{n-1}+c_{n-1} u_{n-1}
\end{array}
$$\right.
\]

for all $y \in C$ and $n \in \mathbb{N}$, where $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are sequences in $[0,1)$ such that $a_{n}+b_{n}+c_{n}=1, a_{n} \geq k+\varepsilon, b_{n} \geq \varepsilon$ for some $\varepsilon \in(0,1), \sum_{n=1}^{\infty} c_{n}<\infty,\left\{u_{n}\right\}$ is a bounded sequence in $C,\left\{r_{n}\right\}$ is a sequence in $(0, \infty)$ such that $\lim _{n \rightarrow \infty} \inf r_{n}>0$ and $i(n) \equiv n(\bmod N), h(n)=\left\lceil\frac{n}{N}\right\rceil$ with a ceiling function $\lceil\cdot\rceil$.

REMARK 1.1. (a) Putting $\psi \equiv 0$ in (1), we obtain an algorithm

$$
\left\{\begin{array}{l}
\phi\left(v_{n-1}, y\right)+\frac{1}{r_{n-1}}\left\langle y-v_{n-1}, v_{n-1}-x_{n-1}\right\rangle \geq 0 \text { for all } y \in C, \tag{2}\\
x_{n}=a_{n-1} v_{n-1}+b_{n-1} T_{i(n)}^{h(n)} v_{n-1}+c_{n-1} u_{n-1} \text { for each } n \in \mathbb{N}
\end{array}\right.
$$

(b) Putting $c_{n}=0$ for all $n \in \mathbb{N}$ in (2), we obtain the algorithm considered in [6]

$$
\left\{\begin{array}{l}
\phi\left(v_{n-1}, y\right)+\frac{1}{r_{n-1}}\left\langle y-v_{n-1}, v_{n-1}-x_{n-1}\right\rangle \geq 0 \text { for all } y \in C, \tag{3}\\
x_{n}=a_{n-1} v_{n-1}+\left(1-a_{n-1}\right) T_{i(n)}^{h(n)} v_{n-1} \text { or each } n \in \mathbb{N}
\end{array}\right.
$$

(c) Putting $\phi \equiv 0$ and $v_{n}=x_{n}(n \in \mathbb{N})$ in (3), we obtain the algorithm considered in [11]

$$
\begin{equation*}
x_{n}=a_{n-1} x_{n-1}+\left(1-a_{n-1}\right) T_{i(n)}^{h(n)} x_{n-1} \text { for each } n \in \mathbb{N} \tag{4}
\end{equation*}
$$

2 Preliminaries

First of all, we recall some definitions and results needed in the main results.

DEFINITION 2.1. Let $\phi: C \times C \rightarrow \mathbb{R}$ be a function and $\psi: C \rightarrow C$ be a nonlinear mapping. (a) ϕ is said to be monotone if $\phi(x, y)+\phi(y, x) \leq 0$ for all $x, y \in C$. (b) ψ is said to be monotone if $\langle\psi x-\psi y, x-y\rangle \geq 0$ for all $x, y \in C$.

DEFINITION 2.2. A mapping $T: C \rightarrow C$ is asymptotically k-strictly pseudocontractive if there exist $k \in[0,1)$ and a sequence $\left\{k_{n}\right\} \subset[1, \infty)$ with $\lim _{n \rightarrow \infty} k_{n}=1$ such that
$\left\|T^{n} x-T^{n} y\right\|^{2} \leq k_{n}^{2}\|x-y\|^{2}+k\left\|\left(I-T^{n}\right) x-\left(I-T^{n}\right) y\right\|^{2} \quad$ for all $x, y \in C$ and $n \in \mathbb{N}$.

LEMMA 2.1 ([7, 10]). Let H be a real Hilbert space. Then we have the following identities:
(i) $\|x-y\|^{2}=\|x\|^{2}-\|y\|^{2}-2\langle x-y, y\rangle$ for all $x, y \in H$.
(ii) For all $x, y \in H$ and $a, b, c \in[0,1]$ with $a+b+c=1$,

$$
\|a x+b y+c z\|^{2}=a\|x\|^{2}+b\|y\|^{2}+c\|z\|^{2}-a b\|x-y\|^{2}-b c\|y-z\|^{2}-c a\|z-x\|^{2} .
$$

(iii) If $\left\{x_{n}\right\}$ is a sequence in H weakly converging to z, then

$$
\lim _{n \rightarrow \infty} \sup \left\|x_{n}-y\right\|^{2}=\lim _{n \rightarrow \infty} \sup \left\|x_{n}-z\right\|^{2}+\|z-y\|^{2} \text { for all } y \in H
$$

LEMMA 2.2 ([10]). Let $\left\{a_{n}\right\},\left\{c_{n}\right\}$ and $\left\{\delta_{n}\right\}$ be nonnegative real sequences satisfying the condition $a_{n+1} \leq\left(1+\delta_{n}\right) a_{n}+c_{n}$ for each $n \in \mathbb{N}$. If

$$
\sum_{n=1}^{\infty} \delta_{n}<\infty \text { and } \sum_{n=1}^{\infty} c_{n}<\infty
$$

then $\lim _{n \rightarrow \infty} a_{n}$ exists.

3 Main Results

We assume that the mapping $\phi: C \times C \rightarrow \mathbb{R}$ satisfies the following conditions:
(i) $\phi(x, x)=0$ for all $x \in C$;
(ii) ϕ is monotone;
(iii) ϕ is upper hemi-continuous in the first variable;
(iv) ϕ is convex and lower semi-continuous in the second variable.

We have the following theorems.
THEOREM 3.1. Let C be a closed convex subset of a Hilbert space H. Let $\psi: C \rightarrow C$ be a monotone nonlinear mapping. For $r>0$ and $x \in H$, define a mapping $S_{r}: H \rightarrow 2^{C}$ by

$$
S_{r} x=\left\{z \in C: \phi(z, y)+\langle\psi z, y-z\rangle+\frac{1}{r}\langle y-z, z-x\rangle \geq 0 \text { for all } y \in C\right\}
$$

Then the following statements (i)-(iii) hold.
(i) $S_{r} x$ is a singleton for each $x \in H$.
(ii) S_{r} is firmly nonexpansive, i.e.,

$$
\left\|S_{r} x-S_{r} y\right\|^{2} \leq\left\langle S_{r} x-S_{r} y, x-y\right\rangle \text { for } x, y \in H
$$

(iii) The set $F\left(S_{r}\right)$ of all fixed points of S_{r} is a closed and convex subset of C as a solution set of the following equilibrium problem considered in [9]: finding $x \in C$ such that $\phi(x, y)+\langle\psi x, y-x\rangle \geq 0$ for all $y \in C$.

PROOF. (i) We put $\zeta(x, y)=\phi(x, y)+\langle\psi x, y-x\rangle$ for all $x, y \in C$. By the conditions of ϕ and [1, Theorem 1], we see that $S_{r} x \neq \emptyset$ for any $x \in C$. Next, we show that $S_{r} x$ is a singleton for $x \in C$. Suppose that $z_{1}, z_{2} \in S_{r} x$. Then

$$
\left\{\begin{array}{l}
\phi\left(z_{1}, y\right)+\left\langle\psi z_{1}, y-z_{1}\right\rangle+\frac{1}{r}\left\langle y-z_{1}, z_{1}-x\right\rangle \geq 0 \text { for } y \in C \tag{5}\\
\phi\left(z_{2}, y\right)+\left\langle\psi z_{2}, y-z_{2}\right\rangle+\frac{1}{r}\left\langle y-z_{2}, z_{2}-x\right\rangle \geq 0 \text { for } y \in C
\end{array}\right.
$$

Putting $y=z_{2}$ in the first inequality and $y=z_{1}$ in the second inequality (5), respectively and adding them, we have

$$
\phi\left(z_{1}, z_{2}\right)+\phi\left(z_{2}, z_{1}\right)+\left\langle\psi z_{1}-\psi z_{2}, z_{2}-z_{1}\right\rangle \geq \frac{1}{r}\left\|z_{1}-z_{2}\right\|^{2} .
$$

Since $\phi\left(z_{1}, z_{2}\right)+\phi\left(z_{2}, z_{1}\right) \leq 0$ and $\left\langle\psi z_{1}-\psi z_{2}, z_{2}-z_{1}\right\rangle \leq 0$, we have $z_{1}=z_{2}$. So we prove statement (i).
(ii) Let $z=S_{r} x$ and $z^{\prime}=S_{r} x^{\prime}$. Then

$$
\left\{\begin{array}{l}
\phi\left(z, z^{\prime}\right)+\left\langle\psi z, z^{\prime}-z\right\rangle+\frac{1}{r}\left\langle z^{\prime}-z, z-x\right\rangle \geq 0 \\
\phi\left(z^{\prime}, z\right)+\left\langle\psi z^{\prime}, z-z^{\prime}\right\rangle+\frac{1}{r}\left\langle z-z^{\prime}, z^{\prime}-x^{\prime}\right\rangle \geq 0
\end{array}\right.
$$

Adding two inequalities and applying the monotonicity of ϕ and ψ, we have

$$
\left\langle S_{r} x-S_{r} x^{\prime}, x-x^{\prime}\right\rangle=\left\langle z-z^{\prime}, x-x^{\prime}\right\rangle \geq\left\|z-z^{\prime}\right\|^{2}=\left\|S_{r} x-S_{r} x^{\prime}\right\|^{2}
$$

Hence, S_{r} is a firmly nonexpansive mapping. So we prove statement (ii).
(iii) If $x \in F\left(S_{r}\right)$, then

$$
\phi(x, y)+\langle\psi x, y-x\rangle=\phi(x, y)+\langle\psi x, y-x\rangle+\frac{1}{r}\langle y-x, x-x\rangle \geq 0
$$

for all $y \in C$. So x is a solution of the equilibrium problem in [9]. Next, let $\left\{x_{n}\right\}$ be a convergent sequence in $F\left(S_{r}\right)$ with a limit $x \in H$. Since $F\left(S_{r}\right) \subset C$ and C is closed, we have $x \in C$. Also, S_{r} is continuous. Then we have

$$
x=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} S_{r} x_{n}=S_{r} x
$$

It means that $x \in F\left(S_{r}\right)$, that is, $F\left(S_{r}\right)$ is closed.
To show that $F\left(S_{r}\right)$ is convex, we let $z=\lambda x+(1-\lambda) y$ for $x, y \in F\left(S_{r}\right)$ and $\lambda \in[0,1]$. By Lemma 2.1(ii) and the nonexpansiveness of S_{r}, we have

$$
\begin{aligned}
\left\|z-S_{r} z\right\|^{2}= & \left\|\lambda\left(x-S_{r} z\right)+(1-\lambda)\left(y-S_{r} z\right)\right\|^{2} \\
= & \lambda\left\|x-S_{r} z\right\|^{2}+(1-\lambda)\left\|y-S_{r} z\right\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} \\
\leq & \lambda\|x-z\|^{2}+(1-\lambda)\|y-z\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} \\
= & \lambda\|x-(\lambda x+(1-\lambda) y)\|^{2}+(1-\lambda)\|y-(\lambda x+(1-\lambda) y)\|^{2} \\
& -\lambda(1-\lambda)\|x-y\|^{2} \\
= & \lambda(1-\lambda)^{2}\|x-y\|^{2}+(1-\lambda) \lambda^{2}\|x-y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2}=0
\end{aligned}
$$

Hence, $S_{r} z=z$ and $z \in F\left(S_{r}\right)$. Therefore $F\left(S_{r}\right)$ is convex. So we prove statement (iii).

The proof of Theorem 3.1 is complete.
REMARK 3.1. By putting $\psi \equiv 0$ in Theorem 3.1, we obtain [4, Lemma 2.12].
Next, we consider our main result.
THEOREM 3.2. Assume that the mappings $T_{i}: C \rightarrow C$ for $i=1, \cdots, N$ satisfy the following conditions:
(i) C is a closed convex subset of a Hilbert space H;
(ii) T_{i} is asymptotically k_{i}-strictly pseudo-contractive for $k_{i} \in[0,1), i=1,2, \cdots, N$ and for each $i \in\{1,2, \cdots, N\},\left\{k_{n, i}\right\}$ is a sequence in $[1, \infty)$ such that $\sum_{n=1}^{\infty}\left(k_{n, i}^{2}-\right.$ 1) $<\infty$;
(iii) $k=\max \left\{k_{i}: 1 \leq i \leq N\right\}$ and $k_{n}^{\prime}=\max \left\{k_{n, i}: 1 \leq i \leq N\right\}$ for each $n \in \mathbb{N}$.

Let $\psi: C \rightarrow C$ be a monotone nonlinear mapping with

$$
F:=\left(\bigcap_{i=1}^{N} F\left(T_{i}\right)\right) \bigcap F\left(S_{r}\right) \neq \emptyset
$$

For any $x_{0} \in C$, let $\left\{x_{n}\right\}$ and $\left\{v_{n}\right\}$ be sequences generated by Algorithm 1.1. Then $\left\{x_{n}\right\}$ and $\left\{v_{n}\right\}$ converge weakly to the unique same element of F.

PROOF. Let $p \in F$. By Algorithm 1.1 and Theorem 3.1(i), we see that $v_{n-1}=$ $S_{r_{n-1}} x_{n-1}$ and

$$
\left\|v_{n-1}-p\right\|=\left\|S_{r_{n-1}} x_{n-1}-S_{r_{n-1}} p\right\| \leq\left\|x_{n-1}-p\right\|
$$

for each $n \in \mathbb{N}$. By Algorithm 1.1 and Lemma 2.1(ii), we have

$$
\begin{aligned}
\left\|x_{n}-p\right\|^{2}= & \left\|a_{n-1}\left(v_{n-1}-p\right)+b_{n-1}\left(T_{i(n)}^{h(n)} v_{n-1}-p\right)+c_{n-1}\left(u_{n-1}-p\right)\right\|^{2} \\
\leq & a_{n-1}\left\|v_{n-1}-p\right\|^{2}+b_{n-1}\left\|T_{i(n)}^{h(n)} v_{n-1}-T_{i(n)}^{h(n)} p\right\|^{2}+c_{n-1}\left\|u_{n-1}-p\right\|^{2} \\
& -a_{n-1} b_{n-1}\left\|T_{i(n)}^{h(n)} v_{n-1}-v_{n-1}\right\|^{2} \\
\leq & a_{n-1}\left\|v_{n-1}-p\right\|^{2}+b_{n-1}\left\{\left(k_{h(n)}^{\prime}\right)^{2}\left\|v_{n-1}-p\right\|^{2}+k \|\left(I-T_{i(n)}^{h(n)}\right) v_{n-1}\right. \\
& \left.-\left(I-T_{i(n)}^{h(n)}\right) p \|^{2}\right\}+c_{n-1}\left\|u_{n-1}-p\right\|^{2}-a_{n-1} b_{n-1}\left\|T_{i(n)}^{h(n)} v_{n-1}-v_{n-1}\right\|^{2} \\
\leq & \left(k_{h(n)}^{\prime}\right)^{2}\left\|v_{n-1}-p\right\|^{2}-b_{n-1}\left(a_{n-1}-k\right)\left\|T_{i(n)}^{h(n)} v_{n-1}-v_{n-1}\right\|^{2}
\end{aligned}
$$

$$
\begin{align*}
& +c_{n-1}\left\|u_{n-1}-p\right\|^{2} \tag{6}\\
\leq & {\left[1+\left(\left(k_{h(n)}^{\prime}\right)^{2}-1\right)\right]\left\|x_{n-1}-p\right\|^{2}+c_{n-1}\left\|u_{n-1}-p\right\|^{2} } \tag{7}
\end{align*}
$$

Since $\sum_{n=1}^{\infty}\left(k_{n, i}^{2}-1\right)<\infty$, and by Lemma 2.2, we see that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists. On the other hand, since $a_{n} \geq k+\varepsilon$ and $b_{n} \geq \varepsilon$ for $n \in \mathbb{N}$ and some $\varepsilon \in(0,1)$, we have

$$
\begin{aligned}
& \left(k_{h(n)}^{\prime}\right)^{2}\left\|x_{n-1}-p\right\|^{2}-\left\|x_{n}-p\right\|^{2}+c_{n-1}\left\|u_{n-1}-p\right\|^{2} \\
\geq & b_{n-1}\left(a_{n-1}-k\right)\left\|T_{i(n)}^{h(n)} v_{n-1}-v_{n-1}\right\|^{2} \\
\geq & \varepsilon^{2}\left\|T_{i(n)}^{h(n)} v_{n-1}-v_{n-1}\right\|^{2} .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} k_{h(n)}^{\prime}=1$ and $\lim _{n \rightarrow \infty} c_{n}=0$, taking the limits as $n \rightarrow \infty$ in the above inequality, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{i(n)}^{h(n)} v_{n-1}-v_{n-1}\right\|^{2}=0 \tag{8}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
\left\|x_{n}-v_{n-1}\right\| & =\left\|a_{n-1} v_{n-1}+b_{n-1} T_{i(n)}^{h(n)} v_{n-1}+c_{n-1} u_{n-1}-v_{n-1}\right\| \\
& =\left\|-\left(1-a_{n-1}\right)\left(v_{n-1}-T_{i(n)}^{h(n)} v_{n-1}\right)+c_{n-1}\left(u_{n-1}-T_{i(n)}^{h(n)} v_{n-1}\right)\right\| \\
& \leq\left(1-a_{n-1}\right)\left\|v_{n-1}-T_{i(n)}^{h(n)} v_{n-1}\right\|+c_{n-1}\left\|u_{n-1}-T_{i(n)}^{h(n)} v_{n-1}\right\|
\end{aligned}
$$

By (8), we see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-v_{n-1}\right\|=0 \tag{9}
\end{equation*}
$$

By the firm nonexpansiveness of $S_{r_{n-1}}$ and Lemma 2.1(i), we have

$$
\begin{aligned}
\left\|v_{n-1}-p\right\|^{2} & =\left\|S_{r_{n-1}} x_{n-1}-S_{r_{n-1}} p\right\|^{2} \leq\left\langle S_{r_{n-1}} x_{n-1}-S_{r_{n-1}} p, x_{n-1}-p\right\rangle \\
& =\left\langle v_{n-1}-p, x_{n-1}-p\right\rangle=-\left\langle-\left(x_{n-1}-v_{n-1}\right)-\left(x_{n-1}-p\right), x_{n-1}-p\right\rangle \\
& =-\frac{1}{2}\left(\left\|x_{n-1}-v_{n-1}\right\|^{2}-\left\|x_{n-1}-p\right\|^{2}-\left\|v_{n-1}-p\right\|^{2}\right)
\end{aligned}
$$

and hence

$$
\left\|v_{n-1}-p\right\|^{2} \leq\left\|x_{n-1}-p\right\|^{2}-\left\|x_{n-1}-v_{n-1}\right\|^{2}
$$

Applying this inequality to (6), we have

$$
\left\|x_{n}-p\right\|^{2} \leq\left(k_{h(n)}^{\prime}\right)^{2}\left(\left\|x_{n-1}-p\right\|^{2}-\left\|x_{n-1}-v_{n-1}\right\|^{2}\right)+c_{n-1}\left\|u_{n-1}-p\right\|^{2}
$$

Since $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists and $\lim _{n \rightarrow \infty} k_{h(n)}^{\prime}=1$, we see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n-1}-v_{n-1}\right\|=0 \tag{10}
\end{equation*}
$$

Applying (9) and (10) to the triangle inequality, we have

$$
\left\|v_{n}-v_{n-1}\right\| \leq\left\|v_{n}-x_{n}\right\|+\left\|x_{n}-v_{n-1}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
$$

which implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|v_{n}-v_{n+j}\right\|=0 \text { for } j \in\{1, \cdots, N\} \tag{11}
\end{equation*}
$$

Similarly, applying (10) and (11) to the triangle inequality, we obtain

$$
\left\|x_{n}-x_{n-1}\right\| \leq\left\|x_{n}-v_{n}\right\|+\left\|v_{n}-v_{n-1}\right\|+\left\|v_{n-1}-x_{n-1}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
$$

which implies that $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n+j}\right\|=0$ for $j \in\{1, \cdots, N\}$. On the other hand,

$$
\begin{align*}
\left\|v_{n-1}-T_{n} v_{n-1}\right\| \leq & \left\|v_{n-1}-T_{i(n)}^{h(n)} v_{n-1}\right\|+\left\|T_{i(n)} T_{i(n)}^{h(n)-1} v_{n-1}-T_{i(n)} v_{n-1}\right\| \\
\leq & \left\|v_{n-1}-T_{i(n)}^{h(n)} v_{n-1}\right\|+L\left(\left\|T_{i(n)}^{h(n)-1} v_{n-1}-T_{i(n-N)}^{h(n)-1} v_{n-N}\right\|\right. \\
& \left.+\left\|T_{i(n-N)}^{h(n)-1} v_{n-N}-v_{n-N-1}\right\|+\left\|v_{n-N-1}-v_{n-1}\right\|\right) \tag{12}
\end{align*}
$$

where

$$
L=\sup \left\{\frac{k+\sqrt{1+\left(k_{n}^{2}-1\right)(1-k)}}{1-k}: n \in \mathbb{N}\right\}
$$

Since, for each $n>N, n=(h(n)-1) N+i(n), i(n-N)=i(n)$ and $h(n-N)=h(n)-1$,

$$
\begin{align*}
\left\|T_{i(n)}^{h(n)-1} v_{n-1}-T_{i(n-N)}^{h(n)-1} v_{n-N}\right\| & =\left\|T_{i(n)}^{h(n)-1} v_{n-1}-T_{i(n)}^{h(n)-1} v_{n-N}\right\| \\
& \leq L\left\|v_{n-1}-v_{n-N}\right\| \tag{13}
\end{align*}
$$

and

$$
\begin{align*}
& \left\|T_{i(n-N)}^{h(n)-1} v_{n-N}-v_{n-N-1}\right\| \\
\leq & \left\|T_{i(n-N)}^{h(n-N)} v_{n-N}-T_{i(n-N)}^{h(n-N)} v_{n-N-1}\right\|+\left\|T_{i(n-N)}^{h(n-N)} v_{n-N-1}-v_{n-N-1}\right\| \\
\leq & L \cdot\left\|v_{n-N}-v_{n-N-1}\right\|+\left\|T_{i(n-N)}^{h(n-N)} v_{n-N-1}-v_{n-N-1}\right\| . \tag{14}
\end{align*}
$$

So by (12)-(14), we see that

$$
\begin{aligned}
& \left\|v_{n-1}-T_{n} v_{n-1}\right\| \\
\leq & \left\|v_{n-1}-T_{i(n)}^{h(n)} v_{n-1}\right\|+L \cdot\left\{\left\|T_{i(n)}^{h(n)-1} v_{n-1}-T_{i(n-N)}^{h(n)-1} v_{n-N}\right\|\right. \\
& \left.+\left\|T_{i(n-N)}^{h(n)-1} v_{n-N}-v_{n-N-1}\right\|+\left\|v_{n-N-1}-v_{n-1}\right\|\right\} \\
\leq & \left\|v_{n-1}-T_{i(n)}^{h(n)} v_{n-1}\right\|+L \cdot\left\{L\left\|v_{n-1}-v_{n-N}\right\|+L \cdot\left\|v_{n-N}-v_{n-N-1}\right\|\right. \\
& \left.+\left\|T_{i(n-N)}^{h(n-N)} v_{n-N-1}-v_{n-N-1}\right\|+\left\|v_{n-N-1}-v_{n-1}\right\|\right\} .
\end{aligned}
$$

By (8) and (11), we have that $\lim _{n \rightarrow \infty}\left\|v_{n-1}-T_{n} v_{n-1}\right\|=0$. Since

$$
\begin{aligned}
\left\|v_{n}-T_{n} v_{n}\right\| & \leq\left\|v_{n}-v_{n-1}\right\|+\left\|v_{n-1}-T_{n} v_{n-1}\right\|+\left\|T_{n} v_{n-1}-T_{n} v_{n}\right\| \\
& \leq(1+L) \cdot\left\|v_{n}-v_{n-1}\right\|+\left\|v_{n-1}-T_{n} v_{n-1}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for any $j=1, \cdots, N$, we have

$$
\begin{aligned}
\left\|v_{n}-T_{n+j} v_{n}\right\| & \leq\left\|v_{n}-v_{n+j}\right\|+\left\|v_{n+j}-T_{n+j} v_{n+j}\right\|+\left\|T_{n+j} v_{n+j}-T_{n+j} v_{n}\right\| \\
& \leq(1+L) \cdot\left\|v_{n}-v_{n+j}\right\|+\left\|v_{n+j}-T_{n+j} v_{n+j}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

which gives that $\lim _{n \rightarrow \infty}\left\|v_{n}-T_{l} v_{n}\right\|=0$ for $l \in\{1, \cdots, N\}$. Moreover, for each $l \in$ $\{1, \cdots, N\}$, we have

$$
\begin{aligned}
\left\|x_{n}-T_{l} x_{n}\right\| & \leq\left\|x_{n}-v_{n}\right\|+\left\|v_{n}-T_{l} v_{n}\right\|+\left\|T_{l} v_{n}-T_{l} x_{n}\right\| \\
& \leq(1+L) \cdot\left\|x_{n}-v_{n}\right\|+\left\|v_{n}-T_{l} v_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Put

$$
W\left(x_{n}\right)=\left\{x \in H: x_{n_{i}} \rightharpoonup x \text { for some subsequence }\left\{x_{n_{i}}\right\} \text { of }\left\{x_{n}\right\}\right\}
$$

Then $W\left(x_{n}\right) \neq \emptyset$ by the fact that $\left\{x_{n}\right\}$ is bounded in H. Next, we claim that $W\left(x_{n}\right) \subset$ F. Let $w \in W\left(x_{n}\right)$ be an arbitrary element. Then there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ converging weakly to w. Since $\lim _{n \rightarrow \infty}\left\|x_{n}-v_{n}\right\|=0$, we can obtain that $v_{n_{i}} \rightharpoonup w$ as $i \rightarrow \infty$. By the fact that $\lim _{n \rightarrow \infty}\left\|v_{n}-T_{l} v_{n}\right\|=0, T_{l} v_{n_{i}} \rightarrow w$ for $l \in\{1, \cdots, N\}$. Now, we show that w is a fixed point of S_{r}. Since $v_{n}=T_{r_{n}} v_{n}$ for each $n \in \mathbb{N}$, we have

$$
\phi\left(v_{n}, y\right)+\left\langle\psi v_{n}, y-v_{n}\right\rangle+\frac{1}{r_{n}}\left\langle y-v_{n}, v_{n}-x_{n}\right\rangle \geq 0 \text { for all } y \in C \text { and } n \in \mathbb{N} .
$$

By the monotonicity of ϕ, we have

$$
\left\langle y-v_{n_{i}}, \frac{v_{n_{i}}-x_{n_{i}}}{r_{n_{i}}}\right\rangle \geq \phi\left(y, v_{n_{i}}\right)+\left\langle\psi v_{n_{i}}, v_{n_{i}}-y\right\rangle \text { for } i \in \mathbb{N} .
$$

Since $\frac{v_{n_{i}}-x_{n_{i}}}{r_{n_{i}}} \rightarrow 0$ and $v_{n_{i}} \rightharpoonup w$ as $i \rightarrow \infty$, and by the condition (iv) of ϕ, we have

$$
\phi(y, w)+\langle\psi w, w-y\rangle \leq 0 \text { for } y \in C
$$

By the conditions (i) and (iv) of ϕ, we see that

$$
\begin{aligned}
0 & =\phi\left(y_{t}, y_{t}\right) \leq t \phi\left(y_{t}, y\right)+(1-t) \phi\left(y_{t}, w\right) \\
& \leq t \phi\left(y_{t}, y\right)+(1-t)\left\langle\psi w, y_{t}-w\right\rangle=t \phi\left(y_{t}, y\right)+(1-t) t\langle\psi w, y-w\rangle \\
& \leq \phi\left(y_{t}, y\right)+(1-t)\langle\psi w, y-w\rangle
\end{aligned}
$$

where $t \in(0,1], y \in C$, and $y_{t}=t y+(1-t) w$. By the condition (iii) of ϕ,

$$
0 \leq \phi(w, y)+\langle\psi w, y-w\rangle \text { for all } y \in C
$$

which shows that $w \in F\left(S_{r}\right)$. Moreover, $w \in \bigcap_{l=1}^{N} F\left(T_{l}\right)$. In fact, if $w \notin F\left(T_{l}\right)$ for some $l \in\{1, \cdots, N\}$, then from the Opial's condition and the fact that $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{l} x_{n}\right\|=0$,

$$
\begin{aligned}
\lim _{i \rightarrow \infty} \inf \left\|x_{n_{i}}-w\right\| & <\lim _{i \rightarrow \infty} \inf \left\|x_{n_{i}}-T_{l} w\right\| \leq \lim _{i \rightarrow \infty} \inf \left\{\left\|x_{n_{i}}-T_{l} x_{n_{i}}\right\|+\left\|T_{l} x_{n_{i}}-T_{l} w\right\|\right\} \\
& \leq \lim _{i \rightarrow \infty} \inf L \cdot\left\|x_{n_{i}}-w\right\|
\end{aligned}
$$

which derives a contradiction. Consequently, we have

$$
w \in F=\left(\bigcap_{l=1}^{N} F\left(T_{l}\right)\right) \bigcap F\left(S_{r}\right)
$$

Finally, we show that $\left\{x_{n}\right\}$ and $\left\{v_{n}\right\}$ converge weakly to the unique same element of F. Indeed, it is sufficient to show that $W\left(x_{n}\right)$ is a singleton. We take any $w_{1}, w_{2} \in$ $W\left(x_{n}\right)$ and let $\left\{x_{n_{i}}\right\}$ and $\left\{x_{n_{j}}\right\}$ be subsequences of $\left\{x_{n}\right\}$ such that $x_{n_{i}} \rightharpoonup w_{1}$ and $x_{n_{j}} \rightharpoonup w_{2}$. Since $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for each $p \in F$ and $w_{1}, w_{2} \in F$, by Lemma 2.1(iii), we obtain

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|x_{n}-w_{1}\right\|^{2} & =\limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-w_{1}\right\|^{2}=\limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-w_{2}\right\|^{2}+\left\|w_{2}-w_{1}\right\|^{2} \\
& =\limsup _{i \rightarrow \infty}\left\|x_{n_{i}}-w_{2}\right\|^{2}+\left\|w_{2}-w_{1}\right\|^{2} \\
& =\limsup _{i \rightarrow \infty}\left\|x_{n_{i}}-w_{1}\right\|^{2}+2\left\|w_{2}-w_{1}\right\|^{2} \\
& =\limsup _{n \rightarrow \infty}\left\|x_{n}-w_{1}\right\|^{2}+2\left\|w_{2}-w_{1}\right\|^{2}
\end{aligned}
$$

Hence $w_{1}=w_{2}$, which shows that $W\left(x_{n}\right)$ is a singleton. The proof of Theorem 3.2 is complete.

We have the following theorems in $[6,11]$ as corollaries of Theorem 3.2.
THEOREM 3.3 ([6]). Assume that the conditions (i)-(iii) in Theorem 3.2 hold and that ϕ satisfies

$$
F:=\left(\bigcap_{i=1}^{N} F\left(T_{i}\right)\right) \bigcap S(\phi) \neq \emptyset .
$$

For any $x_{0} \in C$, let $\left\{x_{n}\right\}$ and $\left\{v_{n}\right\}$ be sequences generated by (3), where $n=(h-$ 1) $N+i(n \geq 1), i=i(n) \in\{1,2, \cdots, N\}, h=h(n) \geq 1$ is a positive integer and $h(n) \rightarrow \infty$ as $n \rightarrow \infty$. Let $\left\{a_{n}\right\}$ and $\left\{r_{n}\right\}$ be sequences satisfying $\left\{a_{n}\right\} \subset[\alpha, \beta]$ for some $\alpha, \beta \in(k, 1),\left\{r_{n}\right\} \subset(0, \infty)$ and $\lim _{n \rightarrow \infty} \inf r_{n}>0$. Then $\left\{x_{n}\right\}$ and $\left\{v_{n}\right\}$ converge weakly to an element of F.

THEOREM 3.4 ([11]). Assume that the conditions (i)-(iii) in Theorem 3.2 hold and

$$
F:=\left(\bigcap_{i=1}^{N} F\left(T_{i}\right)\right) \neq \emptyset
$$

For any $x_{0} \in C$, let $\left\{x_{n}\right\}$ be a sequence generated by (4), where $\left\{a_{n}\right\}$ is a sequence in $(0,1)$ such that $k+\varepsilon \leq a_{n} \leq 1-\varepsilon$ for some $\varepsilon \in(0,1), n=(h-1) N+i(n \geq 1)$, where $i=i(n) \in\{1,2, \cdots, N\}, h=h(n) \geq 1$ is a positive integer and $h(n) \rightarrow \infty$ as $n \rightarrow \infty$. Then $\left\{x_{n}\right\}$ converges weakly to an element of F.

REMARK 3.2. Our result is a weak convergence under Algorithm 1.1 for a finite family of asymptotically k_{i}-strictly pseudo-contractive mappings in Hilbert spaces. The convergences, mappings and spaces need to be more weakened, for examples, strongly convergences, asymptotically nonexpansive mappings and $C A T(0)$-spaces, respectively. Till now, many kinds of strong convergence results are well-known, but the weak convergence results are few. So, we suggest the following open problem.

Open problem. Do $\left\{x_{n}\right\}$ and $\left\{v_{n}\right\}$ weakly converge for a finite family of asymptotically nonexpansive mappings with Algorithm 1.1 under suitable conditions?

Acknowledgment. This work was supported by Dong-eui University Foundation Grant (2013).

References

[1] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63(1994), 123-145.
[2] S. S. Chang, H. W. J. Lee and C. K. Chan, A new hybrid method for solving a generalized equilibrium problem, fixed point problem and variational inequality problem with application to optimization, Nonlinear Anal., 70(2009), 3307-3310.
[3] S. S. Chang, H. W. J. Lee and C. K. Chan, A new method for solving equilibrium problem solving a variational iequality problem and obtaining common fixed points in Banach spaces, with applications, Nonlinear Anal., 73(2010), 2260-2270.
[4] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6(2005), 117-136.
[5] S. H. Kim and B. S. Lee, Weak convergence of a hybrid iterative scheme with errors for equilibrium problems and common fixed point problems, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 21(2014), 195-206.
[6] P. Kumam, N. Petrot and R. Wangkeeree, A hybrid iterative scheme for equilibrium problems and fixed point problems of asymptotically k-strict pseudocontractions, J. Comp. Appl. Math., 233(2010), 2013-2026.
[7] G. Marino and H. K. Xu, Weak and strong convergence theorems for strict pseudocontractions in Hilbert space, J. Math. Anal. Appl., 329(2007), 336-346.
[8] A. Moudafi, Mixed equilibrium problems: Sensitivity analysis and algorithm aspect, Comp. Math. Appl., 44(2002), 1099-1108.
[9] A. Moudafi and M. Théra, Proximal and Dynamical Approaches to Equilibrium Problems, Lecture Notes in Economics and Mathematical Systems, vol. 477, Springer-Verlag, New York, 1999.
[10] M. O. Osilike and D. I. Igbokwe, Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations, Comput. Math. Appl., 40(2000), 559-567.
[11] X. Qin, Y. J. Cho, S. M. Kang and M. Shang, A hybrid iterative scheme for asymptotically k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 70(2009), 1902-1911.
[12] Y. Tanaka, On Constructive versions of the tychonoff and Schauder fixed point theorems, Appl. Math. E-Notes, 11(2011), 125-132.

[^0]: *Mathematics Subject Classifications: 47H09, 47H10.
 ${ }^{\dagger}$ Department of Mathematics, Kyungsung University, Busan 608-736, Korea
 ${ }^{\ddagger}$ Corresponding author. Department of Mathematics, Dongeui University, Busan 614-714, Korea
 §Department of Mathematics, Kyungsung University, Busan 608-736, Korea

