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Abstract

In this paper, we establish some results for the existence and uniqueness of
a fixed point for a certain type operators on partial metric spaces. Our results
generalize well-known results in metric spaces. Also, we provide an example to
illustrate our result.

1 Introduction and Preliminaries

In the past few years, the extension of the theory of fixed point to generalized structures
as cone metric spaces, partial metric spaces and ordered metric spaces has received
much attention (see, for instance, [1]—[19] and references cited therein).
In 1992, Matthews [11] introduced the notion of a partial metric space, which is

a generalization of usual metric spaces in which the self-distance for any point need
not be equal to zero. The partial metric space has wide applications in many branches
of mathematics as well as in the field of computer domain and semantics. After this
remarkable contribution, many authors focused on partial metric spaces and its topo-
logical properties.

DEFINITION 1.1. Let X be a non-empty set and p : X ×X → [0,∞) satisfies

(i) x = y ⇔ p(x, x) = p(y, y) = p(x, y),

(ii) p(x, x) ≤ p(x, y),

(iii) p(x, y) = p(y, x),

(iv) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z),
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for all x, y and z ∈ X. Then the pair (X, p) is called a partial metric space and p is
called a partial metric on X.

It is clear that, if p(x, y) = 0, then x = y. But if x = y, p(x, y) may not be 0. Each
partial metric p on X generates a T0 topology τp on X which has as a base the family
of open p-balls {Bp(x, ε) : x ∈ X, ε > 0} where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}

for all x ∈ X and ε > 0. Similarly, closed p-ball is defined as

Bp[x, ε] = {y ∈ X : p(x, y) ≤ p(x, x) + ε}.

If p is a partial metric on X, then the function dp : X ×X → R+ given by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) (1)

is a (usual) metric on X.

EXAMPLE 1.1. Let I denote the set of all intervals [a, b] for any real numbers
a ≤ b. Let p : I × I → [0,∞) be a function such that

p([a, b], [c, d]) = max{b, d} −min{a, c}.

Then (I, p) is a partial metric space.

EXAMPLE 1.2. Let X = R and p(x, y) = emax{x,y} for all x, y ∈ X. Then (X, p)
is a partial metric space.

Some basic concepts on partial metric spaces are defined as follows:

DEFINITION 1.2 (See [11, 12]).

(i) A sequence {xn} in a partial metric space (X, p) converges to x ∈ X if and only
if p(x, x) = limn→∞ p(x, xn).

(ii) A sequence {xn} in a partial metric space (X, p) is called a Cauchy sequence if
and only if limn,m→∞ p(xn, xm) exists and is finite.

(iii) A partial metric space (X, p) is said to be complete if every cauchy sequence {xn}
∈ X converges, with respect to τp, to a point x ∈ X such that

p(x, x) = lim
n,m→∞

p(xn, xm).

(iv) A mapping f : X → X is said to be continuous at x0 ∈ X, if for every ε > 0,
there exists δ > 0 such that f(B(x0, δ)) ⊂ B(f(x0), ε).

In this paper, we obtained some results for the existence and uniqueness of a fixed
point for a certain type operators on partial metric spaces. Our results generalize well-
known results in (usual) metric spaces. Also, we introduce an example to illustrate the
usability of our result.
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2 Main Results

To begin with we have the following lemmas of [12] and [13] which will be used in the
sequel.

LEMMA 2.1 (see [12]). (i) A sequence {xn} is Cauchy in a partial metric space
(X, p) if and only if {xn} is Cauchy in a metric space (X, dp). (ii) A partial metric
space (X, p) is complete if a metric space (X, dp) is complete. i.e

lim
n→∞

dp(x, xn) = 0⇔ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm).

LEMMA 2.2 (see [13]). Let (X, p) be a partial metric space.

(i) If p(x, y) = 0, then x = y.

(ii) If x 6= y, then p(x, y) > 0.

LEMMA 2.3 (see [13]). Let xn → z as n → ∞ in a partial metric space (X, p)
where p(z, z) = 0. Then limn→∞ p(xn, y) = p(z, y) for every y ∈ X.

Denote by Ψ the family of continuous and monotone nondecreasing functions ψ :
[0,∞) → [0,∞) such that ψ(t) = 0 if and only if t = 0 and by Φ the family of lower
semi-continuous functions ϕ : [0,∞)→ [0,∞) such that ϕ(t) = 0 if and only if t = 0.

THEOREM 2.4. Let (X, d) be a complete partial metric space and T : X → X
satisfy

ψ(p(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(N(x, y)), ∀x, y ∈ X, (2)

where ϕ ∈ Φ, ψ ∈ Ψ,

M(x, y) = max

{
p(y, Ty)[1 + p(x, Tx)]

1 + p(x, y)
,
p(x, Tx)[1 + p(x, Tx)]

1 + p(x, y)
, p(x, y)

}
and

N(x, y) = max

{
p(y, Ty)[1 + p(x, Tx)]

1 + p(x, y)
, p(x, y)

}
.

Then T has a unique fixed point.

PROOF. Let x0 be an arbitrary point in X. We construct the sequence {xn} in
X as follows: xn+1 = Txn, for n ≥ 0. If there exit n such that xn = xn+1 then xn
is a fixed point of T . Now suppose that xn 6= xn+1, for all n ≥ 0. Letting x = xn−1,
y = xn in the equation (2) respectively we have

ψ(p(Txn−1, Txn)) ≤ ψ(M(xn−1, xn))− ϕ(N(xn−1, xn)),
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where

M(xn−1, xn) = max

{
p(xn−1, xn),

p(xn, Txn)[1 + p(xn−1, Txn−1)]

1 + p(xn−1, xn)
,

p(xn−1, Txn−1)[1 + p(xn−1, Txn−1)]

1 + p(xn−1, xn)

}
= max

{
p(xn−1, xn),

p(xn, xn+1)[1 + p(xn−1, xn)]

1 + p(xn−1, xn)
,

p(xn−1, xn)[1 + p(xn−1, xn)]

1 + p(xn−1, xn)

}
= max{p(xn, xn+1), p(xn−1, xn), p(xn−1, xn)}
= max{p(xn+1, xn), p(xn−1, xn)}

and

N(xn−1, xn) = max

{
p(xn, Txn)[1 + p(xn−1, Txn−1)]

1 + p(xn−1, xn)
, p(xn−1, xn)

}
= max

{
p(xn, xn+1)[1 + p(xn−1, xn)]

1 + p(xn−1, xn)
, p(xn−1, xn)

}
= max{p(xn, xn+1), p(xn−1, xn)}.

Hence we obtain

ψ(p(xn, xn+1)) ≤ ψ(max {p(xn, xn+1), p(xn−1, xn)})
−ϕ(max {p(xn, xn+1), p(xn−1, xn)}). (3)

If p(xn, xn+1) > p(xn−1, xn), then from equation (3), we have

ψ(p(xn, xn+1)) ≤ ψ(p(xn, xn+1))− ϕ(p(xn, xn+1)) < ψ(p(xn, xn+1)),

which is contradiction since p(xn, xn+1) > 0 by Lemma 2.2. So, we have p(xn, xn+1) ≤
p(xn−1, xn), that is, {p(xn, xn+1)} is a non-increasing sequence of positive real numbers.
Thus, there exists L ≥ 0 such that

lim
n→∞

(p(xn, xn+1)) = L. (4)

Suppose that L > 0. Taking the lower limit in equation (3) as n → ∞ and using (4)
and the properties of ψ,ϕ, we have

ψ(L) ≤ ψ(L)− lim
n→∞

inf ϕ(p(xn−1, xn)) ≤ ψ(L)− ϕ(L) < ψ(L),

which is contradiction. Therefore,

lim
n→∞

p(xn, xn+1) = 0. (5)

Using inequality (1), we have dp(xn, xn+1) ≤ 2p(xn, xn+1) and hence

dp(xn, xn+1) = 0. (6)
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Now, we will prove that limn,m→∞ p(xn, xm) = 0. Suppose to the contrary that
limn,m→∞ p(xn, xm) 6= 0. Then there exists ε > 0 for which we can find two sub-
sequences {xm(k)}, {xn(k)} of {xn} such that n(k) is the smallest index for which

n(k) > m(k) > k, p(xn(k), xm(k)) ≥ ε. (7)

This implies
p(xn(k)−1, xm(k)) < ε. (8)

From (7) and (8), we have

ε ≤ p(xn(k), xm(k)) ≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k))− p(xn(k)−1, xn(k)−1)
≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k)) < ε+ p(xn(k), xn(k)−1).

Taking k →∞ and using (5), we get

lim
k→∞

p(xn(k), xm(k)) = ε. (9)

By triangle inequality, we have

p(xn(k), xm(k)) ≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k))− p(xn(k)−1, xn(k)−1)
≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k))

≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k)−1) + p(xm(k)−1, xm(k))

−p(xm(k)−1, xm(k)−1)
≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k)−1) + p(xm(k)−1, xm(k))

and

p(xn(k)−1, xm(k)−1) ≤ p(xn(k)−1, xn(k)) + p(xn(k), xm(k)−1)− p(xn(k), xn(k))
≤ p(xn(k)−1, xn(k)) + p(xn(k), xm(k)−1)

≤ p(xn(k)−1, xn(k)) + p(xn(k), xm(k)) + p(xm(k), xm(k)−1)

−p(xm(k), xm(k))
≤ p(xn(k)−1, xn(k)) + p(xn(k), xm(k)) + p(xm(k), xm(k)−1).

Taking k →∞ in the above two inequalities and using (5) and (9), we get

lim
k→∞

p(xn(k)−1, xm(k)−1) = ε. (10)

Now from (2), we have

ψ(p(xm(k), xn(k))) = ψ(p(Txm(k)−1, Txn(k)−1))

≤ ψ(M(xm(k)−1, xn(k)−1))− ϕ(N(xm(k)−1, xn(k)−1)), (11)

where

M(xm(k)−1, xn(k)−1) = max

{
p(xn(k)−1, Txn(k)−1)[1 + p(xm(k)−1, Txm(k)−1)]

1 + p(xm(k)−1, xn(k)−1)
,
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p(xm(k)−1, Txm(k)−1)[1 + p(xm(k)−1, Txm(k)−1)]

1 + p(xm(k)−1, xn(k)−1)

, p(xm(k)−1, xn(k)−1)

}
.

Taking limit as k →∞ and using (5),(9) and (10), we have

lim
k→∞

M(xm(k)−1, xn(k)−1) = ε (12)

and

N(xm(k)−1, xn(k)−1) = max

{
p(xn(k)−1, Txn(k)−1)[1 + p(xm(k)−1, Txm(k)−1)]

1 + p(xm(k)−1, xn(k)−1)
,

p(xm(k)−1, xn(k)−1)

}
.

Taking limit as k →∞ and using (5),(9) and (10), we have

lim
k→∞

N(xm(k)−1, xn(k)−1) = ε. (13)

Now taking the lower limit when k →∞ in (11) and using (9) and (12), we have

ψ(ε) ≤ ψ(ε)− lim inf
k→∞

ϕ(N(xm(k)−1, xn(k)−1)) ≤ ψ(ε)− ϕ(ε) < ψ(ε),

which is contradiction. So, we have

lim
n,m→∞

p(xn, xm) = 0.

Since limn,m→∞ p(xn, xm) exists and is finite, we conclude that {xn} is a cauchy se-
quence in (X, p). Using (1), we have dp(xn, xm) ≤ 2p(xn, xm), therefore,

lim
n,m→∞

dp(xn, xm) = 0. (14)

Thus by Lemma 2.1, {xn} is a cauchy sequence in both (X, dp) and (X, p). Since (X, p)
is a complete partial metric space then there exist x ∈ X such that limn→∞ p(xn, x) =
p(x, x). Since limn,m→∞ p(xn, xm) = 0, then again by using Lemma 2.1, we have
p(x, x) = 0. Now, we will prove that x is a fixed point of T . Suppose that Tx 6= x.
From the inequality (2) and using Lemma 2.3, we have

ψ(p(xn, Tx)) = ψ(p(Txn−1, Tx)

≤ ψ

(
max

{
p(xn−1, x),

p(x, Tx)[1 + p(xn−1, Txn−1)]

1 + p(xn−1, x)
,

p(xn−1, Txn−1)[1 + p(xn−1, Txn−1)]

1 + p(xn−1, x)

})
−ϕ

(
max

{
p(x, Tx)[1 + p(xn−1, Txn−1)]

1 + p(xn−1, x)
, p(xn−1, x)

})
. (15)
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Letting n→∞ in the above inequality and regarding the property of ϕ,ψ, we obtain

ψ(p(x, Tx)) ≤ ψ(p(x, Tx))− ϕ(p(x, Tx)) < ψ(p(x, Tx)). (16)

Then
ψ(p(x, Tx)) < ψ(p(x, Tx)),

which is contradiction. Thus Tx = x.
Finally, we shall prove the uniqueness of fixed point. Suppose that y is another

fixed point of T such that x 6= y. From (2), we have

ψ(p(x, y)) = ψ(p(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(N(x, y))

≤ ψ(p(x, y))− ϕ(p(x, y))

< ψ(p(x, y)),

which is contradiction since p(x, y) > 0. Hence x = y.

COROLLARY 2.5 (see [13]). Let (X, d) be a complete partial metric space and
T : X → X satisfies

ψ(p(Tx, Ty)) ≤ ψ(N(x, y))− ϕ(N(x, y)), ∀x, y ∈ X, (17)

where ϕ ∈ Φ, ψ ∈ Ψ, and

N(x, y) = max

{
p(y, Ty)[1 + p(x, Tx)]

1 + p(x, y)
, p(x, y)

}
.

Then T has a unique fixed point.

Taking ψ to be the identity mapping and ϕ(t) = (1 − k)t for all t ≥ 0, where
k ∈ (0, 1), we have the following result.

COROLLARY 2.6. Let (X, d) be a complete partial metric space and T : X → X
satisfy

p(Tx, Ty) ≤ kmax

{
p(y, Ty)[1 + p(x, Tx)]

1 + p(x, y)
, p(x, y)

}
(18)

for each x, y ∈ X and k ∈ (0, 1). Then T has a unique fixed point.

EXAMPLE 2.7 Consider X = [0, 1] and p(x, y) = max{x, y}, then (X, p) is a
partial metric space. Suppose T : X → X such that Tx = x2

k+x for all x ∈ X and
ϕ(t), ψ(t) : [0,∞) → [0,∞), ϕ(t) = t

k+t and ψ(t) = rt, where k, r ∈ N without loss of
generality assume that x ≥ y. Then we have

p(Tx, Ty) = max

{
x2

k + x
,
y2

k + y

}
=

x2

k + x
,

M(x, y) = max

{
p(y, Ty)[1 + p(x, Tx)]

1 + p(x, y)
,
p(x, Tx)[1 + p(x, Tx)]

1 + p(x, y)
, p(x, y)

}



240 Some Results in Partial Metric Space

= max

{
y(1 + x)

1 + x
,
x(1 + x)

1 + x
, x

}
= max{y, x, x} = x,

and

N(x, y) = max

{
p(y, Ty)[1 + p(x, Tx)]

1 + p(x, y)
, p(x, y)

}
= max

{
y(1 + x)

1 + x
, x

}
= max{y, x} = x.

Therefore

ψ(p(Tx, Ty) =
rx2

k + x

and

ψ(M(x, y))− ϕ(N(x, y)) =
rx2

k + x
+

(rk − 1)x

k + x
.

Following cases arise:

Case 1. If r = k = 1 then ψ(p(Tx, Ty)) = ψ(M(x, y))− ϕ(N(x, y)).

Case 2. If r, k > 1 then ψ(p(Tx, Ty)) < ψ(M(x, y))− ϕ(N(x, y)).

Thus it satisfies all the conditions of Theorem 2.4. Hence, T has a unique fixed
point, indeed x = 0 is the required point.

3 Remarks

Das et al. [10] proved a fixed point theorem for rational type mappings in complete
metric spaces. Cabrera et al. [3] extend the result of Das et al. [10] in the context of
metric spaces endowed with a partial order. Using the auxiliary functions, Chandok et
al. [5] generalize some of the results of [3] in the framework of metric spaces endowed
with a partial order. Theorem 2.4. generalize and extend the result of Chandok et al.
[5] in a space having non-zero self distance, that is, partial metric space.
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