
Applied Mathematics E-Notes, 15(2015), 225-232 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Adapted Quadratic Approximation For Weakly
Singular Integrals∗

Mostefa Nadir†, Belkacem Lakehali‡

Received 25 December 2014

Abstract

In this work, we present a new approximation to the weakly singular integral,
for this goal, we use a modification of the quadratic spline function and replace it
in the integral in order to eliminate the weak singularity. This approximation is
destined to solve numerically the weakly singular integral equation on a smooth
oriented curve or on an interval.

1 Introduction

Many physical and engineering problems, scattering theory, seismology, heat conduc-
tion and fluid flow lead to weakly singular integral equations based on the Abel’s in-
tegral [2]. Various numerical approximations for Abel’s integrals are treated, based on
Legendre wavelet approximations [8], Bernstein polynomials [1] and Wavelet Galerkin
method [3].
The idea is to replace the Abel kernel by its approximations in the weakly singular

integral equation

ϕ(t0) + b0(t0)

∫
Γ

ϕ(t)

(t− t0)α
dt+

∫
Γ

k(t, t0)ϕ(t)dt = f(t0), (1)

where Γ designates an oriented smooth open curve, the points t and t0 are on Γ and
0 ≤ α < 1, b0(t), k(t, t0) and f(t) are a given functions on Γ.

The goal of this work is to present a new technical method based on the quadratic
spline functions, in order to give a good and effi ciency approximation to the weakly
singular integral

F (t0) =

∫
Γ

ϕ(t)

(t− t0)α
dt, t, t0 ∈ Γ, (2)

where ϕ(t) is a given function on Γ.
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226 Adapted Quadratic Approximation

2 Quadrature

We denote by t the parametric complex function t(s) of the curve Γ defined by

t(s) = x(s) + iy(s), a ≤ s ≤ b,

where x(s) and y(s) are continuous functions on the finite interval of definition [a, b]
and have continuous first derivatives x′(s) and y′(s) never simultaneously null. Divide
the interval [a, b] into N equal subintervals I1, I2, ..., IN by the points

sσ = a+ σ
l

N
, l = b− a for σ = 0, 1, 2, ...., N.

Further, we divide each of segments [sσ, sσ+1] in two equals segments [sσ, sσM ] and
[sσM , sσ+1] where

sσM = sσ +
h

2
, h =

l

N
.

In other words, we have for each subinterval [sσ, sσ+1] the following subdivision

[sσ, sσ+1] = {sσ < sσM < sσ+1}.

We introduce the notation

tσ = t(sσ), tσM = t(sσM ), tσ+1 = t(sσ+1); σ = 0, 1, 2, ..., N − 1.

Assume that, for the indices σ, ν = 0, 1, 2, ...., N − 1, the points t and t0 belong respec-

tively to the arcs
_

tσtσ+1 and
_

tνtν+1 where
_

tαtα+1 designates the arc with ends tα and
tα+1 [4,5,6].
For an arbitrary number σ = 0, 1, 2, ..., N−1, we define the piecewise quadratic inter-

polation polynomial S2(ϕ; t, σ) dependent on ϕ, t and σ which represents the quadratic
approximation of the function density ϕ(t) on the subinterval [tσ, tσ+1] of the curve
Γ. We interpolate the function density ϕ(t) with respect to the values ϕ(tσ), ϕ(tσM )
and ϕ(tσ+1) at the points tσ, tσM and tσ+1 respectively with a quadratic polynomial,
given by the following formula.
For tσ ≤ t ≤ tσ+1,

S2(ϕ; t, σ) =
(t− tσM )(t− tσ+1)

(tσM − tσ)(tσ+1 − tσ)
ϕ(tσ)− (t− tσ)(t− tσ+1)

(tσM − tσ)(tσ+1 − tσM )
ϕ(tσM )

+
(t− tσ)(t− tσM )

(tσ+1 − tσ)(tσ+1 − tσM )
ϕ(tσ+1), (3)

this piecewise quadratic interpolating polynomial exists and is unique.
We define for an arbitrary numbers σ and ν, such that 0 ≤ σ, ν ≤ N − 1, the

following continuous function βσν(ϕ; t, t0), dependents on ϕ, t and t0

βσν(ϕ; t, t0) =

{
U(ϕ; t, σ)− V (ϕ; t0, σ, ν) for t 6= t0,
0 for t = t0.

(4)
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The function U(ϕ; t, σ) represents a modified quadratic interpolation of the function
density ϕ(t) on the subinterval [tσ, tσ+1] of the curve Γ. Indeed, for tσ ≤ t ≤ tσ+1 we
put

U(ϕ; t, σ) =
(t− tσM )(t− tσ+1)

(tσM − tσ)(tσ+1 − tσ)
ϕ(tσ)

(t− t0)α

(tσ − t0)α

− (t− tσ)(t− tσ+1)

(tσM − tσ)(tσ+1 − tσM )
ϕ(tσM )

(t− t0)α

(tσM − t0)α

+
(t− tσ)(t− tσM )

(tσ+1 − tσ)(tσ+1 − tσM )
ϕ(tσ+1)

(t− t0)α

(tσ+1 − t0)α
,

and the function V (ϕ; t0, σ, ν) is given by

V (ϕ; t0, σ, ν) = S2(ϕ; t0, ν)
(t− tσM )(t− tσ+1)

(tσM − tσ)(tσ+1 − tσ)

(t− t0)α

(tσ − t0)α

−S2(ϕ; t0, ν)
(t− tσ)(t− tσ+1)

(tσM − tσ)(tσ+1 − tσM )

(t− t0)α

(tσM − t0)α

+S2(ϕ; t0, ν)
(t− tσ)(t− tσM )

(tσ+1 − tσ)(tσ+1 − tσM )

(t− t0)α

(tσ+1 − t0)α
.

Denote by ψσν(ϕ; t, t0) the cubic approximation of the density ϕ(t) at the point t ∈
[tσ, tσ+1], t0 ∈ [tν , tν+1] and 0 ≤ σ, ν ≤ N − 1 by

ψσν(ϕ; t, t0) = ϕ(t0) + βσν(ϕ; t, t0). (5)

Our idea is to replace the density ϕ(t) by expansion (5) in the weakly singular integral
(2)

F (t0) =

∫
Γ

ϕ(t)

(t− t0)α
dt,

and obtain the following approximation noting by Fn(t0) given as

Fn(t0) =

∫
Γ

ψσν(ϕ; t, t0)

(t− t0)α
dt =

∫
Γ

ϕ(t0)

(t− t0)α
dt+

∫
Γ

βσν(ϕ; t, t0)

(t− t0)α
dt. (6)

3 Main Results

We have

THEOREM 1. Let Γ be an oriented smooth open curve and let ϕ be a function
density defined on Γ. Then the following estimation

|F (t0)− Fn(t0)| ≤ C

(2N)
1−α

holds, where the constant C depends only on the curve Γ.
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PROOF. Taking the points t ∈ [tσ, tσ+1] and t0 ∈ [tν , tν+1], we write, for tσ ≤ t ≤
tσ+1 and tνk ≤ t0 ≤ tν+1,

ϕ(t)− ψσν(ϕ; t, t0) =
ϕ(t)− ϕ(t0)− βσν(ϕ; t, t0)

(t− t0)α

=
ϕ(t)− ϕ(t0)

(t− t0)α
−
{

(t− tσM )(t− tσ+1)

(tσM − tσ)(tσ+1 − tσ)
ϕ(tσ)

(t− t0)α

(tσ − t0)α

− (t− tσ)(t− tσ+1)

(tσM − tσ)(tσ+1 − tσM )
ϕ(tσM )

(t− t0)α

(tσM − t0)α

+
(t− tσ)(t− tσM )

(tσ+1 − tσ)(tσ+1 − tσM )
ϕ(tσ+1)

(t− t0)α

(tσ+1 − t0)α

−S2(ϕ; t0, ν)(t− tσM )(t− tσ+1)

(tσ+1 − tσ)(tσM − tσ)

(t− t0)α

(tσ − t0)α

+
S2(ϕ; t0, ν)(t− tσ)(t− tσ+1)

(tσ+1 − tσM )(tσM − tσ)

(t− t0)α

(tσM − t0)α

−S2(ϕ; t0, ν)(t− tσ)(t− tσM )

(tσ+1) − tσM )(tσ+1 − tσ)

(t− t0)α

(tσ+1 − t0)α

}
. (7)

Taking into account the expression (7) we get∫
Γ

ϕ(t)− ψσν(ϕ; t, t0)

(t− t0)α
dt =

N−1∑
σ=0

∫
tσtσ+1

ϕ(t)− ψσν(ϕ; t, t0)

(t− t0)α
dt. (8)

Note that, the equalities (tσ − t0)
α

= 0, (tσM − t0)
α

= 0 and (tσ+1 − t0)
α

= 0 are
possible only when σ = ν − 1, ν + 1 and ν. For these cases, it is easy to see that the
integral (8) exists when tσ tends to t0 or tσM tends to t0 or tσ+1 tends to t0 as a weakly
singular integral. For the other case σ = ν, we can easily seeing that, the function
βσσ(ϕ; t, t0) contains (tσ − t0), (tσM − t0) and (tσ+1 − t0) as factors, so for all cases
the function βσν(ϕ; t, t0) makes sense.
Indeed, for the points t, t0 ∈ [tσ, tσ+1] such that tσ ≤ t, t0 ≤ tσ+1, we write

βσσ(ϕ; t, t0) = U(ϕ; t, σ)− V (ϕ; t0, σ, σ).

Hence

βσσ(ϕ; t, t0)

=
(t− tσM )(t− tσ+1)

(tσM − tσ)(tσ+1 − tσ)

(t− t0)α

(tσ − t0)α
[ϕ(tσ)− S2(ϕ; t0, σ)]

− (t− tσ)(t− tσ+1)

(tσM − tσ)(tσ+1 − tσM )

(t− t0)α

(tσM − t0)α
[ϕ(tσM )− S2(ϕ; t0, σ)]

+
(t− tσ)(t− tσM )

(tσ+1 − tσ)(tσ+1 − tσM )

(t− t0)α

(tσ+1 − t0)α
[ϕ(tσ+1)− S2(ϕ; t0, σ)] . (9)

In other words, we write

βσσ(ϕ; t, t0) = (t− t0)αQ(ϕ; t, t0),
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where the expression Q(ϕ; t, t0) is given by

Q(ϕ; t, t0) =
(t− tσM )(t− tσ+1)

(tσM − tσ)(tσ+1 − tσ)

1

(tσ − t0)α
[ϕ(tσ)− S2(ϕ; t0, σ)]

− (t− tσ)(t− tσ+1)

(tσM − tσ)(tσ+1 − tσM )

1

(tσM − t0)α
[ϕ(tσM )− S2(ϕ; t0, σ)]

+
(t− tσ)(t− tσM )

(tσ+1 − tσ)(tσ+1 − tσM )

1

(tσ+1 − t0)α
[ϕ(tσ+1)− S2(ϕ; t0, σ)] .

Passing now to the estimation of the expression (8), for t0 ∈
_

tνtν+1 and σ 6= ν−1, ν+1
and ν we have∣∣∣∣∣

N−1∑
σ=0

∫
tσtσ+1

dt

(t− t0)α
{(ϕ(t)− ϕ(t0))

−{ (t− tσM )(t− tσ+1)

(tσM − tσ)(tσ+1 − tσ)
ϕ(tσ)

(t− t0)α

(tσ − t0)α

− (t− tσ)(t− tσ+1)

(tσM − tσ)(tσ+1 − tσM )
ϕ(tσM )

(t− t0)α

(tσM − t0)α

+
(t− tσ)(t− tσM )

(tσ+1 − tσ)(tσ+1 − tσM )
ϕ(tσ+1)

(t− t0)α

(tσ+1 − t0)α

−S2(ϕ; t0, ν)(t− tσM )(t− tσ+1)

(tσ+1 − tσ)(tσM − tσ)

(t− t0)α

(tσ − t0)α

+
S2(ϕ; t0, ν)(t− tσ)(t− tσ+1)

(tσ+1 − tσM )(tσM − tσ)

(t− t0)α

(tσM − t0)α

−S2(ϕ; t0, ν)(t− tσ)(t− tσM )

(tσ+1 − tσM )(tσ+1 − tσ)

(t− t0)α

(tσ+1 − t0)α

}∣∣∣∣ = O

(
1

(2N)1−α

)
.

Indeed, it is clear that

max
t0∈

_
tνtν+1

∣∣∣∣∣
N−1∑
σ=0

∫ tσ+1

tσ

(ϕ(t)− ϕ(t0))

(t− t0)α
dt

∣∣∣∣∣ = O

(
1

(2N)1−α

)
and also we estimate the expression∣∣∣∣∣

N−1∑
σ=0

∫ tσ+1

tσ

−
{

(t− tσM )(t− tσ+1)

(tσM − tσ)(tσ+1 − tσ)
ϕ(tσ)

(t− t0)α

(tσ − t0)α

− (t− tσ)(t− tσ+1)

(tσM − tσ)(tσ+1 − tσM )
ϕ(tσM )

(t− t0)α

(tσM − t0)α

+
(t− tσ)(t− tσM )

(tσ+1 − tσ)(tσ+1 − tσM )
ϕ(tσ+1)

(t− t0)α

(tσ+1 − t0)α

−S2(ϕ; t0, ν)(t− tσM )(t− tσ+1)

(tσ+1 − tσ)(tσM − tσ)

(t− t0)α

(tσ − t0)α
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+
S2(ϕ; t0, ν)(t− tσ)(t− tσ+1)

(tσ+1 − tσM )(tσM − tσ)

(t− t0)α

(tσM − t0)α

−S2(ϕ; t0, ν)(t− tσ)(t− tσM )

(tσ+1 − tσM )(tσ+1 − tσ)

(t− t0)α

(tσ+1 − t0)α

}
1

(t− t0)α
dt

∣∣∣∣ = O

(
1

(2N)1−α

)
.

Naturally, the estimation given above is obtained by using expressions∣∣∣∣ (t− t0)α

(tσ − t0)α

∣∣∣∣ = O(1),

∣∣∣∣ (t− t0)α

(tσM − t0)α

∣∣∣∣ = O(1),

∣∣∣∣ (t− t0)α

(tσ+1 − t0)α

∣∣∣∣ = O(1).

Further, for the cases where σ = ν− 1, ν + 1 and ν, using the condition of smoothness
of Γ, we get∣∣∣∣∣

∫
tνtν+1

ϕ(t)− ϕ(t0)

(t− t0)α
dt

∣∣∣∣∣ ≤ A
∫ sν+1

sν

(t− t0)1−αds = O

(
1

(2N)2−α

)
,

where A represents the bound of the derivative ϕ′(t0) of the density function, say
|ϕ′(t0)| ≤ A.

4 Numerical Experiments

Using our approximation, we apply the algorithm to weakly singular integrals and we
present results concerning the accuracy of the calculations. In this numerical experi-
ment each table F represents the exact value of the weakly singular integral and Fn
corresponds to the approximate calculation produced by our approximation at points
values interpolation.

EXAMPLE 1. Consider the Abel integral

I = F (t0) =

∫ t0

0

ϕ(t)√
t0 − t

dt,

where the function F (t0) is calculated chosen so that the function ϕ(t) is given

ϕ(t) = t, F (t0) =
4

3
t

3
2 .

The approximate Abel integral Fn(t0) of F (t0) is obtained by the adapted quadratic
approximation

TABLE 1. We present the exact and the approximate values of the Abel integral
in the example 1 in some arbitrary points, the error for N = 10 is calculated.

Values of t Exact integral F Approx integral Fn Error
0.000000 0.000000e+ 000 0.000000e+ 000 0.000000e+ 000
0.200000 1.192570e− 001 1.192570e− 001 1.387779e− 017
0.400000 3.373096e− 001 3.373096e− 001 5.551115e− 017
0.600000 6.196773e− 001 6.196773e− 001 0.000000e+ 000
0.800000 9.540557e− 001 9.540557e− 001 1.110223e− 016
1.000000 1.333333e+ 000 1.333333e+ 000 2.220446e− 016
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EXAMPLE 2. Consider the Abel integral

I = F (t0) =

∫ t0

0

ϕ(t)√
t0 − t

dt,

where the function F (t0) is calculated chosen so that the function ϕ(t) is given

ϕ(t) = t2, F (t0) =
16

15
t

5
2 .

The approximate Abel integral Fn(t0) of F (t0) is obtained by the adapted quadratic
approximation

TABLE 2. We present the exact and the approximate values of the Abel integral
in the example 2 in some arbitrary points, the error for N = 10 is calculated.

Values of t Exact integral F Approx integral Fn Error
0.000000 0.000000e+ 000 0.000000e+ 000 0.000000e+ 000
0.200000 1.908111e− 002 1.908111e− 002 0.000000e+ 000
0.400000 1.079391e− 001 1.079391e− 001 0.000000e+ 000
0.600000 2.974451e− 001 2.974451e− 001 0.000000e+ 000
0.800000 6.105956e− 001 6.105956e− 001 1.110223e− 016
1.000000 1.066667e+ 000 1.066667e+ 000 2.220446e− 016

EXAMPLE 3. Consider the Abel integral

I = F (t0) =

∫ t0

0

ϕ(t)√
t0 − t

dt,

where the function F (t0) is calculated chosen so that the function ϕ(t) is given

ϕ(t) =
1√

1 + t
, F (t0) =

π

2
− arcsin

(
1− t0
1 + t0

)
.

The approximate Abel integral Fn(t0) of F (t0) is obtained by the adapted quadratic
approximation

TABLE 3. We present the exact and the approximate values of the Abel integral
in the example 3 in some arbitrary points, the error for N = 10 is calculated.

Values of t Exact integral F Approx integral Fn Error
0.000000 0.000000e+ 000 0.000000e+ 000 0.000000e+ 000
0.200000 8.410687e− 001 8.411104e− 001 4.173975e− 005
0.400000 1.127885e+ 000 1.128199e+ 000 3.137339e− 004
0.600000 1.318116e+ 000 1.318987e+ 000 8.713448e− 004
0.800000 1.459455e+ 000 1.461079e+ 000 1.623303e− 003
1.000000 1.570796e+ 000 1.573241e+ 000 2.444518e− 003
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