
Applied Mathematics E-Notes, 15(2015), 218-224 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Solving Least Squares Problems With Equality
Constraints Based On Augmented Regularized

Normal Equations∗

Aleksandr Ivanovich Zhdanov†, Sofya Yuryevna Gogoleva‡

Received 20 November 2014

Abstract

This article is devoted to a new algorithm for solving least squares problems
with linear equality constraints. The presented algorithm can help solve large
dimension ill-conditioned problems effi ciently.

1 Statement of the Problem

The considered least squares problem with linear equality constraints (LSE) is given
by

min
Bx=d

‖Ax− b‖2, (1)

where A ∈ Rm×n, B ∈ Rp×n, b ∈ Rm, d ∈ Rp, rank (B) = p < n, and ‖ · ‖2 is the
Euclidean norm.
The LSE problem is significant for applied regression analysis, which is one of the

universal methods for modern mathematical modeling. Regression analysis is widely
used in econometric problems solving.
In [1] it is noted that the method of Lagrange multipliers is ineffi cient for this

problem, therefore two other approaches are proposed.
The first approach is based on orthogonal transformations (QR decomposition using

Householder and Givens transformations). However, this approach has a high computa-
tional complexity and is numerically less stable if A and B are ill-conditioned matrices,
which significantly reduces the practical application of this approach.
The second approach is to obtain an approximate solution of problem (1) based on

the least squares problem without constraints:

min
x∈Rn

∥∥∥∥( A
λB

)
x−

(
b
λd

)∥∥∥∥
2

(2)
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for large λ (λ� 1).
The problem (2) is equivalent to the weighted least squares problem

min
x∈Rn

‖Dλ(Fx− g)‖2, (3)

where

F =

(
A
B

)
∈ R(m+p)×n, g =

(
b
d

)
∈ Rm+p,

and
Dλ = diag (1, . . . , 1︸ ︷︷ ︸

m

, λ, . . . , λ︸ ︷︷ ︸
p

).

In [2] the analysis based on the generalized singular value decomposition (GSVD)
was conducted to determine the quality of the approximation (corresponding to the
solution of the weighted least squares problem (3)) to the solution of the initial LSE
problem (1).
Suppose m ≥ n and

U>AX = diag (α1, . . . , αn) = DA ∈ Rm×n,

V >BX = diag (β1, . . . , βp) = DB ∈ Rp×n

form the GSVD of two matrices (A, B), where > denotes the transpose. We will assume
(without loss of generality) that both matrices A and B have full rank. If

U = [u1, . . . , um], V = [v1, . . . , vp], X = [x1, . . . , xn],

from GSVD, it directly follows that

x∗ =

p∑
i=1

v>i d

βi
xi +

n∑
i=i+1

u>i b

αi
xi (4)

is the exact solution of the LSE problem (1), whereas

x(λ) =

p∑
i=1

αiu
>
i b+ λ

2β2i v
>
i d

α2i + λ
2β2i

+

n∑
i=i+1

u>i b

αi
xi (5)

is the solution of the weighted least squares problem (3).
Then from (4) and (5), we obtain

x(λ)− x∗ =
p∑
i=1

αiu
>
i b+ λ

2β2i v
>
i d

α2i + λ
2β2i

−
p∑
i=1

v>i d

βi
xi =

p∑
i=1

αi(βiu
>
i b− αiv>i d)

βi(α
2
i + λ

2β2i )

and, therefore
lim
λ→∞

‖x(λ)− x∗‖2 = 0.
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As noted in [1], the appeal of the way to obtain the approximate solution of the
LSE problem (1) using the weighted least squares method is that special subprograms
are not required: only subprograms for solving ordinary normal equations (6) are used

F>D2
λFx = F>Dλg ⇐⇒ (A>A+ λ2B>B)x = A>b+ λ2B>d. (6)

However, for large values of the parameter λ, the matrix F>D2
λF of the normal

system (6) becomes extremely ill-conditioned and, as a result, its solving is numerically
unstable when performing calculations on the computer with floating-point arithmetic.

2 Method of Augmented Regularized Normal
Equations

Suppose that t bit floating-point arithmetic with the base ν is used and the parameter
λ is defined as λ = 10r. Thus, if λ2 = 102r ≥ νt, then for the solutions x̃(λ) of nor-
mal equations (6), we cannot guarantee any correct significant figure in the computed
solution. However, as it is shown above, having a higher value of the parameter λ, we
obtain more accurate solution of weighted least squares problem (3).
In this paper we present a new approach for solving the problem (2) based on

augmented regularized normal equations [2].
The method of augmented regularized normal equations proposed in [2] is based on

the following facts.
First, it was shown in [2] that the regularized normal equations problem solving

(the Euler equations)
(FTF + αEs)x = FT g (7)

is equivalent to solving the augmented regularized normal equations problem(
ωEr F
FT −ωEs

)(
y
x

)
=

(
g
0

)
, (8)

where F ∈ Rr×s, g ∈ Rr, α > 0 is a regularization parameter, Er and Es are identity
matrices of orders r and s respectively, y = ω−1µ, µ = g − Fx, ω = α1/2.
Second, it was shown in [2] that the spectral condition numbers of augmented

regularized normal equations matrix (8) and ordinary regularized normal equations
matrix (7) are related as follows:

cond2

(
ωEr F
FT −ωEs

)
=
√
cond2(FTF + αEs).

This fact gives significant advantages of augmented regularized normal equations (8)
over ordinary regularized normal equations (7). The method based on the augmented
regularized normal equations (8) can be used for the numerically stable calculation of
pseudosolutions for rank-deficient system of linear algebraic equations Fx = g or for
systems of linear algebraic equations that are numerically rank-deficient.
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This approach is based on the following well-known fact: since α→ 0, the solution
xα for system (7) tends to the normal pseudosolution

x∗ = F+g, (9)

where F+ is a pseudoinverse matrix. Consequently, the solution xω of augmented
system (8) also converges to pseudosolution (9) if ω → 0.
Let the floating-point arithmetic with p digits and base β be used for calculations.

Then the application of augmented normal equations (8) makes it possible to obtain
a significantly more accurate approximation to pseudosolution (9) compared to the
approximation provided by normal equations (7) in the same arithmetic.
Suppose that the parameter ω is chosen to obey the conditions ω2 ≤ η and ω > η,

where η = β−p. Then, to machine precision, the matrices FTF + ω2Es and FTF are
equal. In addition, we require that the choice of ω minimize the condition number of
augmented system (8). In accordance with these requirements, we set

ω = ω∗ = 10
−q, (10)

where q = min{k ∈ N : 10−2k ≤ η}. Consequently, the choice of ω in the form of (10)
ensures that the condition

min
ω2≤η

cond2

(
ωEr F
FT −ωEs

)
is fulfilled on the set {10−k : k ∈ N}. If the machine precision η ≈ 10−d, then q ≈ d/2.
In MatLab, we have d = 17. The above mentioned choice of ω corresponds to q = 9,
which gives ω∗ = 10−9.
This approach allows us to solve the problem (2) at much higher values of the

parameter λ compared with the method based on the weighted normal equations (6),
when performing calculations in the same t-bit floating-point arithmetic with the base
ν. Therefore, the proposed approach provides a much more accurate approximation to
the solution of the original least squares problem with linear equality constraints (1).
It is obvious that the solution of (2) can be given by

x(λ) =

(
A
λB

)+(
b
λd

)
, (11)

where (·)+ is a Moore-Penrose pseudoinverse of a matrix [3].

For large values λ, the matrix
(

A
λB

)
is extremely ill-conditioned and the solution

of the corresponding system of linear algebraic equations causes serious computational
diffi culties. For solving (7), the method of augmented regularized normal equations
considered above is proposed. In (8), if we suppose F = Fλ, g = gλ and respectively
r = m+p, and s = n, then, according to this method, the solution x(λ) is defined from
system (

ωEm+p Fλ
F>λ −ωEn

)(
y
x

)
=

(
gλ
0

)
, (12)
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where Em+p and En are identity matrices of orders m+ p and n respectively,

Fλ =

(
A
λB

)
∈ R(m+p)×n and gλ =

(
b
λd

)
∈ Rm+p.

The parameter ω, in accordance with [2], is defined as ω = 10−q where

q = min{k ∈ N : 10−2k ≤ ν−t},

and λ = 10q.
As it was shown in [2], the values ω = 10−6 and λ = 106 correspond to calculations

with single precision, and ω = 10−9 and λ = 109 are predefined for MatLab.
This approach allows to solve (with high precision) LSE problems effi ciently. In

this case, it does not require development of specific programs as obtaining a solution
is reduced to solving a system of linear algebraic equations (12) using any standard
program.

3 Numerical Experiment

The effectiveness of the proposed approach is illustrated by a simple test case. Consider
the LSE problem:

min
x1+x2=1

∥∥∥∥∥∥
 1 2
3 4
5 6

( x1
x2

)
−

 7
1
3

∥∥∥∥∥∥
2

. (13)

For the problem (13), we can easily calculate the exact solution vector x∗ = (x∗1, x∗2)>,
which allows to use (13) to test the proposed approach for solving arbitrary LSE prob-
lems.
We express x2 as a function of x1, then x2 = 1 − x1 and the problem (13) can

be transformed to an ordinary least squares problem without constraints (with one
variable):

min
x1∈R

∥∥∥∥∥∥
 1
1
1

x1 −

 −53
3

∥∥∥∥∥∥
2

. (14)

It is obvious that the solution of (14) is x∗1 = 1/3 and therefore, the solution of LSE
problem (13) is x∗ = (1/3, 2/3)>.
Further we shall deal with the solving of the problem (13) using the augmented

regularized normal equations (12). For the problem (13), we have m = 3 and p = 1.
Let λ = 106. Then

Fλ =


1 2
3 4
5 6
106 106

 , gλ =


7
1
3
106

 ,
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and the corresponding augmented normal system (12) is consistent and has order m+
p + n = 6. For this example, the augmented regularized normal equations have the
form of 

ω 0 0 0 1 2
0 ω 0 0 3 4
0 0 ω 0 5 6
0 0 0 ω 106 106

1 3 5 106 −ω 0
2 4 6 106 0 −ω




y1
y2
y3
y4
x1
x2

 =


7
1
3
106

0
0

 , (15)

where the parameter ω is chosen according to the digit capacity of the floating-point
arithmetic. The system (15) is solved using the Crout method (modification of the
Gaussian elimination method) with single precision for ω = 10−6. The following result
has been obtained:

x̂1 = 0.33333333328 and x̂2 = 0.66666666671.

At the same time, the Cholesky method for solving ordinary normal equations (3) for
λ = 106 shows that

x̂1 = 0.19999999999 and x̂2 = 0.80000000000.

Consider the second example that illustrates a possibility of solving the problem using
the proposed method for:

rank
(
A
B

)
< n.

The LSE problem:

min
x1+x2=3

∥∥∥∥∥∥
 1 2
2 4
3 6

( x1
x2

)
−

 1
1
1

∥∥∥∥∥∥
2

. (16)

The solution of LSE problem (16) is x∗ = (0.6, 1.2)>.
Further we shall deal with the solving of the problem (16) using the augmented

regularized normal equations (12). For the problem (16), we have m = 3 and p = 1.
Let λ = 106, then

Fλ =


1 2
2 4
3 6
106 106

 , gλ =


1
1
1
106

 ,

and the corresponding augmented normal system (12) is consistent and has order m+
p + n = 6. For this example, the augmented regularized normal equations have the
form of 

ω 0 0 0 1 2
0 ω 0 0 2 4
0 0 ω 0 3 6
0 0 0 ω 106 106

1 2 3 106 −ω 0
2 4 6 106 0 −ω




y1
y2
y3
y4
x1
x2

 =


1
1
1
106

0
0

 . (17)
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The system (17) is solved using the Crout method with single precision for ω = 10−6.
The following result has been obtained:

x̂1 = 0.59999999999 and x̂2 = 1.20000000000.

4 Conclusion

Thus, the use of ordinary normal equations does not allow to solve the considered prob-
lem, whereas the proposed method based on augmented regularized normal equations
solves this problem almost accurately. Using double precision and having ω = 10−12

and λ = 1012, the method based on the augmented regularized normal equations
provides a solution accurate to all significant figures.
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