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Abstract

In this paper, we consider a population of diabetics and divide it into two
subcategories, one of diabetics with complications and another one of diabetics
without complications. From a model examining the complications of individu-
als diagnosed with diabetes, we associate a nonlinear optimal control problem.
Considering this last one, we prove that there is no cyclical behavior between dia-
betics with complications, diabetics without complications and the rate at which
complications are cured. Moreover we characterize the state equilibrium via Hopf
bifurcation theorem adapted to optimal control problem.

1 Introduction

Diabetes is a chronic disease caused by a combination of hereditary and acquired bad
factors. The treatment is based on medication, strict diet and physical exercises. The
population of diabetics grows significantly in the world and more precisely in developing
countries and this disease with its complications are an important cause of death.
Consequently it is important to understand the effi ciency of the treatments, the effects
of external factors on the disease and its evolution. The reader could find in the
literature many mathematical models focused on these challenges [1, 2, 3, 4, 5, 8, 9, 10].
To our knowledge, the contributions via the optimal control theory for diabetes are

not very wide. In [5], J. R. Faria showed that there is a cyclical behavior between the
weight and the consumption of a diabetic created by the medical treatment, by using
the Hopf bifurcation theorem adapted to optimal control problem. In [2], the authors
considered an optimal control problem for the evolution of numbers of pre-diabetics and
diabetics with and without complications and showed that the population of diabetics
with complications decreases in presence of optimal control. In [1], S. Bernard and A.
Piétrus considered a new model of regulation adapted to the one introduced in [10]
and studied it in the framework of ordinary differential equation and optimal control
theory. By controlling the external glucose food intake, they proved that the plasma
glycemia level can be minimized.
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In this work, we consider a population of diabetics, divided into two subcategories,
one of diabetics with complications and another one of diabetics without complications
as in [3]. From the model examining the complications of individuals diagnosed with di-
abetes, we associate a nonlinear optimal control problem. Considering this last one, we
prove that there is no cyclical behavior between diabetics with complications, diabetics
without complications and the rate at which complications are cured. Moreover, we are
placed in the framework of a nonlinear optimal control problem with a scalar control
and two states for which necessary conditions of an optimal control are well known
[7]. We can thus characterize the equilibrium point by using an adaptation of Hopf
bifurcation theorem to optimal control models as it has been done in [6, 13, 14, 15].
Consequently, section 2 is devoted to the two dimensional nonlinear optimal control

problem. From a control chosen as the rate at which complications are cured and a
concave performance index chosen as a combination of the control and the two sub-
categories of diabetics, we show the existence of an optimal control and characterize it
via the Pontryagin’s maximum principle. In section 3, we prove that there is an equi-
librium state and that there is no cyclical behavior between the number of diabetics
with complications, the one of diabetics without complications and the rate at which
complications are cured. The equilibrium state is characterized in section 4 with the
help of computations on Maple that we describe in the appendix. We finish by some
concluding remarks and perspectives.

2 The Optimal Control Problem

In this section, we are going to use some results on the optimal control theory for a
model examining the complications of individuals diagnosed with diabetes. This theory
is very wide and we refer the reader to [7, 11, 12] for more details about it.
We begin with the mathematical model of [3] in which we choose all the parameters

depending on the time:{
D′(t) = I − (λ(t) + µ(t))D(t) + γ(t)C(t),
C ′(t) = λ(t)D(t)− (γ(t) + µ(t) + ν(t) + δ(t))C(t),

(1)

where

• t is the time,

• D(.) the number of diabetics without complications,

• C(.) the number of diabetics with complications,

• I the incidence of diabetes,

• λ(.) the probability of developing a complication,

• µ(.) the natural mortality rate,

• γ(.) the rate at which complications are cured,

• ν(.) the rate at which patients with complications become severely disabled,
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• δ(.) the mortality rate due to complications.

In this work, the chosen control is u(t) = γ(t), the rate at which complications are
cured. Is is natural to make this choice regarding the following but other choices of
control could be interesting.

THEOREM 1. For all fixed control u = γ, there exists one and only one maximal
solution ([0, tm(u)], Du(.), Cu(.)) of the Cauchy problem (1) with the initial conditions
D(0) = D0 ∈ R, C(0) = C0 ∈ R and tm(u) ∈ R+ ∪ {+∞}.

PROOF. It follows from the application of Cauchy-Lipschitz’s theorem for the prob-
lem (1) since all the functions λ, µ, γ, ν and δ are in L∞(I,R+).

For a fixed discount rate r > 0, we define a concave performance index

F (γ,D,C) = α ln γ + lnC +D,

with α > 0 which will be well chosen later, and our aim is to maximize∫ +∞

0

exp(−rt)F (γ(t), D(t), C(t))dt.

THEOREM 2. Let (D0, C0) be in IR2 such that there is a control u(.) satisfying (1)
with the initial conditions D(0) = D0 and C(0) = C0. There exists an optimal control
u defined on [0,+∞[ such that the associated trajectory (Du(.), Cu(.)) satisfies (1), the
initial conditions and which maximizes∫ +∞

0

exp(−rt)F (γ(t), D(t), C(t))dt.

PROOF. We are in the framework of [7, 13] that is a nonlinear optimal control
problem with a scalar control u(t) = γ(t) and two states D(t) and C(t) where the
present value of a concave performance index F (γ,D,C) has to be maximized. We
conclude by following the gait of [13].
In order to characterize this optimal control, we are going to apply as usual the

Pontryagin’s maximum principle. We refer the reader to [7, 11, 12, 13] for more details
about this principle and more precisely on the necessary conditions for an optimal
control.

THEOREM 3. With previous assumptions, there exists an application P (.) =
(PD(.), PC(.)) : [0,+∞[−→ R2 absolutely continuous called adjoint vector, such that,
for almost all t ≥ 0,{

P ′D(t) = (r + λ(t) + µ(t))PD(t)− λ(t)PC(t)− 1,

P ′C(t) = (r + µ(t) + ν(t) + δ(t))PC(t)− (C(t))−1 + γ(t)(PC(t)− PD(t)),
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with the limiting transversality conditions
lim

t→+∞
exp(−rt)PD(t)D(t) = 0,

lim
t→+∞

exp(−rt)PC(t)C(t) = 0.

And the optimal control γ̄, whose existence has been proved in previous theorem, is
given by

∀t ≥ 0, γ̄(t) =
α(t)

(PC(t)− PD(t))C(t)
.

PROOF. The associated Hamiltonian is defined from the state equations and the
integrand of the objective function F (γ,D,C) as

H(γ,D,C, PD, PC) = α ln γ + lnC +D + PD [I − (λ+ µ)D + γC]

+PC [λD − (γ + µ+ ν + δ)C] .

We just apply the Pontryagin’s maximum principle and the fact that the optimal control
has to maximize the Hamiltonian with respect to u. We omit all the t in order to relieve
the writing and we do it from now.

3 Existence of Equilibrium State

THEOREM 4. If µ = 0, α < 1− σ−1I and r > I(1− α− σ−1I)−1, then there is an
equilibrium state for the system

D′(t) = I − (λ(t) + µ(t))D(t) + γ(t)C(t),
C ′(t) = λ(t)D(t)− (γ(t) + µ(t) + ν(t) + δ(t))C(t),
P ′D(t) = (r + λ+ µ)PD(t)− λPC(t)− 1,
P ′C(t) = (r + µ+ ν + δ)PC(t)− (C(t))−1 + γ(PC(t)− PD(t)).

PROOF. The equilibrium state (D∗, C∗, P ∗D, P
∗
C) if it exists, is solution of the fol-

lowing system that we are going to solve:
I − (λ+ µ)D + γ̄C = 0,
λD − (γ̄ + µ+ ν + δ)C = 0,
(r + λ+ µ)PD − λPC − 1 = 0,
(r + µ+ ν + δ)PC − C−1 + γ̄(PC − PD) = 0.

In order to simplify the writing, let us set ρ = λ+µ, and σ = µ+ν+δ, and T = PC−PD.
By replacing γ̄ by α(TC)−1, the use of the first equation gives

D =
IT + α

ρT

and the use of the second one gives

C =
λ

σ
D − α

σT
.
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Consequently,

C =
λ(α+ IT )− αρ

σρT
.

Moreover, by using the fourth equation, we obtain

PC =
1− α

(r + σ)C

so

PC =
(1− α)σρT

(r + σ)[λIT + α(λ− ρ)]
.

The third equation implies that

PD =
λ

r + ρ
PC +

1

r + ρ

so

PD =
λT [σρ(1− α) + I(r + σ)] + α(r + σ)(λ− ρ)

(r + σ)(r + ρ)[λIT + α(λ− ρ)]
.

Thus

T =
(r + ρ)(1− α)σρT − λT [σρ(1− α) + I(r + σ)]− α(r + σ)(λ− ρ)

(r + σ)(r + ρ)[λIT + α(λ− ρ)]
.

We obtain

T (r + σ)(r + ρ)[λIT + α(λ− ρ)]

= (r + ρ)(1− α)σρT − λT [σρ(1− α) + I(r + σ)]− α(r + σ)(λ− ρ),

that is

λI(r + ρ)(r + σ)T 2 + [α(λ− ρ)(r + ρ)(r + σ)− (r + ρ)(1− α)σρ

+λσρ(1− α) + λI(r + σ)T ] + α(r + σ)(λ− ρ) = 0.

But µ = 0 that is λ = ρ so

T =
σ(1− α)r − I(r + σ)

I(r + λ)(r + σ)
,

since λ and T are non equals to zero. Consequently

P ∗C =
(1− α)σ

(r + σ)I
, P ∗D =

λ(1− α)σ + (r + σ)I

(r + σ)(r + λ)I
,

C∗ =
I

σ
, and D∗ =

I

λ
+

αI(r + λ)(r + σ)

λ[σ(1− α)r − I(r + σ)]
.

It follows that

γ∗ =
ασ(r + λ)(r + σ)

σ(1− α)r − I(r + σ)

and γ∗ > 0 if and only if r[σ(1−α)− I] > σI. At this stage, we have to discuss about
possible values of α and r to ensure the existence of equilibrium state.



202 Diabetes, Complications and Limit Cycles

• If α > 1 then γ∗ < 0 ,

• if α = 1 then γ∗ < 0,

• if α < 1− σ−1I then γ∗ > 0 if and only if r > σI
σ(1−α)−I ,

• if 1− σ−1I < α < 1 then γ∗ < 0.

There is only the third case which leads us to conclude, since γ∗ is a rate so has to
be non negative.

4 Stability Analysis

In this part we are going to classify the equilibrium state defined in the previous section.

THEOREM 5. There is no limit cycle between the number of diabetics with compli-
cations, the one of diabetics without complications and the rate at which complications
are cured.

PROOF. Let us define the Jacobian by

J =


∂D′/∂D ∂D′/∂C ∂D′/∂PD ∂D′/∂PC
∂C ′/∂D ∂C ′/∂C ∂C ′/∂PD ∂C ′/∂PC
∂P ′D/∂D ∂P ′D/∂C ∂P ′D/∂PD ∂P ′D/∂PC
∂P ′C/∂D ∂P ′C/∂C ∂P ′C/∂PD ∂P ′C/∂PC


and the term K by

K =

∣∣∣∣ ∂D′/∂D ∂D′/∂PD
∂P ′D/∂D ∂P ′D/∂PD

∣∣∣∣+∣∣∣∣ ∂C ′/∂C ∂C ′/∂PC
∂P ′C/∂C ∂P ′C/∂PC

∣∣∣∣+2

∣∣∣∣ ∂D′/∂C ∂D′/∂PC
∂P ′D/∂C ∂P ′D/∂PC

∣∣∣∣ .
In order to study the existence of a limit cycle, it is necessary to know the sign of the
determinant of the Jacobian J and of the term K calculated at the state equilibrium
point. For our problem, we have

J =


−(λ+ µ) γ 0 0

λ −(γ + µ+ ν + δ) 0 0
0 0 r + λ+ µ −λ
0 C−2 −γ r + γ + µ+ ν + δ


and

K =

∣∣∣∣ −(λ+ µ) 0
0 r + λ+ µ

∣∣∣∣+∣∣∣∣ −(γ + µ+ ν + δ) 0
C−2 r + γ + µ+ ν + δ

∣∣∣∣+2

∣∣∣∣ γ 0
0 −λ

∣∣∣∣ .
Consequently,

det J = [(λ+ µ)(γ + µ+ ν + δ)− λγ]

∣∣∣∣ r + λ+ µ −λ
−γ r + γ + µ+ ν + δ

∣∣∣∣ ,
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that is

det J = [(λ+ µ)(γ + µ+ ν + δ)− λγ] [(r + λ+ µ)(r + γ + µ+ ν + δ)− λγ]

and

det J = [λ(µ+ ν + δ) + µ(γ + µ+ ν + δ)] [(r + µ)(r + γ + µ+ ν + δ)

+λ(r + µ+ ν + δ)],

which implies that det J ≥ 0. Moreover,

K = −(λ+ µ)(r + λ+ µ)− (γ + µ+ ν + δ)(r + γ + µ+ ν + δ)− 2γλ,

that is K ≤ 0. Since det J ≥ 0 and K ≤ 0, we can say that there is no limit cycle
between diabetics with complications, diabetics without complications and the rate at
which complications are cured.
Let us notice that this result occurs without using the equilibrium state and does

not depend on the form of F .

THEOREM 6. The equilibrium state defined in previous section is a saddle point.

PROOF. In order to classify the state equilibrium, we have to know the sign of
Q = det(J) − 1

2K
2. Because of the complications of the calculus, we use Maple. We

write Q as a polynomial function of degree 4 in γ and evaluate the coeffi cients of the
powers of γ to note that there are negatives, which allows us to conclude that Q is
negative, since γ is positive. The reader can find the different orders in the following
appendix. Consequently, we can say that one has a saddle point stability, real roots, two
are negative and two are positive, and local monotonicity, according to the classification
of equilibria from det(J) and K of [6].

5 Concluding Remarks

In this paper, we proved that by controlling the rate at which complications are cured,
we can maximize the number of diabetics with complications which are cured and
those without complications. Moreover we showed that the evolution of complications
of diabetics does not stabilize around the equilibrium state which is in fact a saddle
point. All these results seem to conform to the reality. For the sequel, it will be
interesting to see the influence of physical exercises, consumption and treatment on
the number of diabetics with complications. For this, the first challenge would be to
introduce these parameters in the models and the second one would be to control them
in order to reduce the number of diabetics with complications.

6 Appendix

For the sake of simplicity, we have set d := δ, g := γ, l := λ, m := µ, n := ν et x := r
in the Maple command lines.
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First, we introduce, the formulas of det(J) and K by typing:
> det(J) := ((x + m) ∗ (x + g + m + n + d) + l ∗ (x + m + n + d)) ∗ (l ∗ (m + n + d

+m ∗ (g + m + n + d));
> K := −(l + m) ∗ (x + l + m)− (g + m + n + d) ∗ (x + g + m + n + d)− 2 ∗ g ∗ l;
After, we evaluate Q = det(J)− 1

2K
2 by typing

> Q := evala(det(J)− K2/4);
Our goal is to develop the polynomial function Q as a power series of the variable g.
The polynomial function Q is of fourth degree and clearly, the coeffi cient of g4 is − 14 .
That is why we introduce
> coeff_g4 := −1/4;
In order to determine the coeffi cient of g3, we use the following command line:
> isolate(Q− coeff_g4 ∗ g 4̂, g 3̂);
which leads us to set
> coeff_g3 := −m− n− d− l− 1/2 ∗ x;
With the same method, we determine the coeffi cient of g2, by using the following com-
mand line:
> isolate(evala(Q− coeff_g4 ∗ g 4̂− coeff_g3 ∗ g 3̂), g 2̂);
which leads us to set
> coeff_g2 := −3/2 ∗ x ∗ n− 3/2 ∗ l ∗ x− 2 ∗ l ∗ n− 2 ∗ l ∗ d− 3/2 ∗ x ∗ d− x ∗m
−3 ∗m ∗ n− 3 ∗ n ∗ d− 3 ∗m ∗ d− 3 ∗ l ∗m− 3/2 ∗ l̂ 2−m 2̂− 1/4 ∗ x̂ 2− 3/2 ∗ n̂ 2
−3/2 ∗ d̂ 2;

Still in the same way, we determine the coeffi cient of g, using this command line:
> isolate(evala(Q− coeff_g4 ∗ g 4̂− coeff_g3 ∗ g 3̂− coeff_g2 ∗ g 2̂), g);
which leads us to set the command line
> coeff_g1 := −2 ∗ x ∗m ∗ n− x ∗ l ∗ n− 2 ∗m ∗ l ∗ d− 2 ∗ x ∗ l ∗m− 6 ∗m ∗ n ∗ d
−2 ∗m ∗ l ∗ n− x ∗ l ∗ d− 2 ∗ x ∗m ∗ d− l̂ 3− n̂ 3− d̂ 3− 3/2 ∗ l̂ 2 ∗ x− 1/2 ∗ x̂ 2 ∗ d
−3 ∗ l̂ 2 ∗m− 3 ∗m ∗ n̂ 2− 1/2 ∗ l ∗ x̂ 2− l̂ 2 ∗ d− 3/2 ∗ x ∗ d̂ 2− 1/2 ∗ x̂ 2 ∗ n
−2 ∗m 2̂ ∗ l− 3/2 ∗ x ∗ n̂ 2− 2 ∗m 2̂ ∗ n− n̂ 2 ∗ l− d̂ 2 ∗ l− 3 ∗ n̂ 2 ∗ d
−3 ∗ n ∗ d̂ 2− 3 ∗m ∗ d̂ 2− 2 ∗m 2̂ ∗ d− l̂ 2 ∗ n− 3 ∗ x ∗ n ∗ d− 2 ∗ n ∗ d ∗ l;

Finally, we calculate the coeffi cient of zero order of Q (in the expansion of Q as a power
series of the variable g) with the command line
> coeff_g0 := evala(Q− coeff_g4 ∗ g 4̂− coeff_g3 ∗ g 3̂− coeff_g2 ∗ g 2̂
−coeff_g1 ∗ g);

To find the sign of coeff_g0, we expand it as a second order power series of variable
x. Using the following sequence of command
> isolate(evala(coeff_g0), x̂ 2);
> simplify(1/2 ∗ l ∗ n + 1/2 ∗ l ∗ d− 1/2 ∗ n ∗ d− 1/4 ∗ l̂ 2− 1/4 ∗ n̂ 2− 1/4 ∗ d̂ 2

+(l− n− d)̂ 2/4);
leads us to set
> coeff_g0_x2 := −(l− n− d)̂ 2/4;
as the coeffi cient of x2. By the same method as before, we are able to set the command
line
> coeff_g0_x1 := −(l̂ 2− (n + d)̂ 2) ∗ (l− (n + d))/2−m ∗ (l− n− d)̂ 2;
as the coeffi cient of x, and
> coeff_g0_x0 := −(l̂ 2− (n + d)̂ 2)̂ 2/4− (m 2̂) ∗ (l− n− d)̂ 2−m ∗ (l̂ 2− (n + d)̂ 2)
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∗(l− n− d);
as the constant coeffi cient with respect to the variable x.
Using the fact that all the parameters are nonnegative numbers, one can see that

all the coeffi cients of the previous expansion of Q are non positive numbers. This leads
us to conclude that Q ≤ 0.

References

[1] S. Bernard and A. Piétrus, Optimal glucose modelling for diabetes, e-Journal of
the Caribbean Academy of Sciences, 8(2015).

[2] A. Boutayeb, W. Boutayeb and M. Lamlili, Optimal control approach to the dy-
namics of population of diabetics, Applied Math. Sciences, 8(2014), 2773—2782.

[3] A. Boutayeb, A. Chetouani, A. Achouyab and E. H. Twizell, A non-linear popu-
lation model of diabetes mellitus, J. Appl. Math. Computing, 21(2006), 127—139.

[4] A. De Gaetano, T. Hardy, B. Beck, E. Abu-Raddad, P. Palumbo, J. Bue-Valleskey
and N. Porksen, Mathematical models of diabetes progression, Am. J. Physiol.
Endocrinol. Metab., 295(2008), E1462—E1479.

[5] J. R. Faria, Limit cycles in an optimal control problem of diabetes, Appl. Math.
Lett., 16(2003), 127—130.

[6] G. Feichtinger, A. Novak and F. Wirl, Limit cycles in intertemporal adjustment
models, J. Econom. Dynam. Control, 18(1994), 353—380.

[7] D. Grass, J. P. Caulkins, G. Feichtinger, G. Tragler and D. A. Behrens, Optimal
Control of Nonlinear Processes. With applications in drugs, corruption, and terror.
Springer-Verlag, Berlin, 2008.

[8] J. Li and J. D. Johnson, Mathematical models of subcutaneous injection of insulin
analogues: A mini-review, Discret. Cont. Dyn. Syst. Ser. B, 12(2009), 401—414.

[9] A. Makroglou, J. Li and Y. Kuang, Mathematical models and software tools for the
glucose-insulin regulatory system and diabetes: an overview, Appl. Num. Math.,
56(2006), 559—573.

[10] M. Meilûnas, On the blood glucose dynamics modelling, Math. Model. Anal.,
3(1998), 136—139.

[11] L. Pontryagin, V. Boltyanski, R. Gamkrelidze and E. Michtchenko, Théorie Math-
ématique Des Processus Optimaux. (French) Traduit du russe par Djilali Embarek.
Éitions Mir, Moscow, 1974. 317 pp. 49—01.

[12] E. Trélat, Contrôle optimal: théorie et applications, Vuibert (2008).

[13] F. Wirl, Cyclical strategies in two-dimensional optimal control models: necessary
conditions and existence, Ann. Oper. Res., 37(1992), 345—356.



206 Diabetes, Complications and Limit Cycles

[14] F. Wirl, Pathways to Hopf bifurcations in dynamic continuous-time optimization
problems, J. Optim. Theory Appl., 91(1996), 299—320.

[15] F. Wirl and G. Feichtinger, Modelling social dynamics (of obesity) and thresholds,
Games, 1(2010), 395—414.


