The Evaluation Of A Quadratic And A Cubic Series With Trigamma Function*

Ovidiu Furdui[†]

Received 26 May 2015

Abstract

The paper is about calculating the quadratic series

$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\zeta(2) - 1 - \frac{1}{2^2} - \dots - \frac{1}{n^2} \right)^2 = \sum_{n=1}^{\infty} \frac{1}{n} (\psi'(n+1))^2$$

and the cubic series

$$\sum_{n=1}^{\infty} n \left(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \cdots \right)^3 = \sum_{n=1}^{\infty} n (\psi'(n))^3,$$

where ψ denotes the digamma function.

1 Introduction and the Main Result

Throughout this paper, let \mathbb{C} , \mathbb{Z}_0^- , \mathbb{N} denote the sets of complex numbers, nonpositive integers, positive integers respectively. The celebrated Riemann zeta function ζ is a function of a complex variable [9, p.265] defined by

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z} = 1 + \frac{1}{2^z} + \frac{1}{3^z} + \dots + \frac{1}{n^z} + \dots \quad (\Re(z) > 1).$$

When z=2 one has that the Riemann zeta function value $\zeta(2)$ is defined by the series formula

$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$

The trigamma function ψ' is defined by [7, p.22]

$$\psi'(z) = \frac{d^2}{dz^2} \log \Gamma(z) = \frac{d}{dz} \psi(z) \quad \left(z \in \mathbb{C} \setminus \mathbb{Z}_0^-\right),\,$$

^{*}Mathematics Subject Classifications: 11M06, 33B15, 33E20, 40A05.

[†]Department of Mathematics, Technical University of Cluj-Napoca, Str. Memorandumului Nr. 28, 400114, Cluj-Napoca, Romania

 $\psi(z)$ being the ψ (or digamma) function defined by $\psi(z) = \frac{d}{dz}\log\Gamma(z) = \frac{\Gamma'(z)}{\Gamma(z)}$ or, in terms of the generalized (or Hurwitz) zeta function $\zeta(s,a)$ defined by $\zeta(s,a) := \sum_{k=0}^{\infty} \frac{1}{(k+a)^s} \ \left(\Re(s) > 1; \ a \in \mathbb{C} \setminus \mathbb{Z}_0^-\right),$

$$\psi'(z) = \sum_{k=0}^{\infty} \frac{1}{(k+z)^2} = \zeta(2,z) \quad (z \in \mathbb{C} \setminus \mathbb{Z}_0^-).$$

This implies that

$$\psi'(n) = \frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots = \zeta(2) - 1 - \frac{1}{2^2} - \dots - \frac{1}{(n-1)^2} \quad (n \in \mathbb{N} \setminus \{1\}).$$

Closed form evaluation of series involving $\zeta(k)$ are collected in [7] and, more recently, in [8]. Other series, linear or quadratic, involving the Riemann zeta function and harmonic numbers, which are evaluated in terms of special constants can be found in [4].

In this paper we evaluate a quadratic and a cubic series involving the tail of $\zeta(2)$. More precisely, we calculate the quadratic series

$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\zeta(2) - 1 - \frac{1}{2^2} - \dots - \frac{1}{n^2} \right)^2 = \sum_{n=1}^{\infty} \frac{1}{n} (\psi'(n+1))^2$$

and the cubic series

$$\sum_{n=1}^{\infty} n \left(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \cdots \right)^3 = \sum_{n=1}^{\infty} n (\psi'(n))^3,$$

where ψ denotes the digamma function.

The main result of this paper is the following theorem.

THEOREM 1 (A quadratic and a cubic series with the tail of $\zeta(2)$). The following identities hold:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\zeta(2) - 1 - \frac{1}{2^2} - \dots - \frac{1}{n^2} \right)^2 = 5\zeta(2)\zeta(3) - 9\zeta(5);$$

(b)
$$\sum_{n=1}^{\infty} n \left(\psi'(n) \right)^3 = \frac{9}{2} \zeta(3) - \frac{17}{8} \zeta(4) - \frac{25}{4} \zeta(5) + \frac{9}{2} \zeta(2) \zeta(3)$$
.

We need in our analysis Abel's summation formula [1, p.55], [4, p.258] which states that if $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ are two sequences of real or complex numbers and $A_n = \sum_{k=1}^n a_k$, then

$$\sum_{k=1}^{n} a_k b_k = A_n b_{n+1} + \sum_{k=1}^{n} A_k (b_k - b_{k+1}) \quad (n \in \mathbb{N}).$$

We will also use, in our calculations, the infinite version of the preceding formula:

$$\sum_{k=1}^{\infty} a_k b_k = \lim_{n \to \infty} (A_n b_{n+1}) + \sum_{k=1}^{\infty} A_k (b_k - b_{k+1}), \tag{1}$$

provided the infinite series on the right hand side of (1) converges and the limit is finite.

A special function which is used in the proof of part (a) of Theorem 1 is the Dilogarithm function. Recall that the Dilogarithm function Li₂ is defined, for $|z| \le 1$, by [7, p.106]

$$\operatorname{Li}_{2}(z) = \sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}} = -\int_{0}^{z} \frac{\ln(1-t)}{t} dt.$$

In particular, $Li_2(1) = \zeta(2)$.

A special identity involving the Dilogarithm function is the following Landen type formula:

$$\zeta(2) - \text{Li}_2(1-z) - \ln z \ln(1-z) = \text{Li}_2(z), \tag{2}$$

whose proof can be found in [7, p.107].

2 Proof of the Main Result

In this section we collect some results we need for proving Theorem 1.

LEMMA 1 (Some logarithm and polylogarithm integrals). The following equalities hold:

(a)
$$\int_0^1 \frac{x \ln x}{1-x} dx = 1 - \zeta(2);$$

(b)
$$\int_0^1 \frac{\ln x \ln(1-x)}{x} dx = \zeta(3);$$

(c)
$$\int_0^1 \frac{\text{Li}_2(x)}{x} dx = \zeta(3);$$

(d)
$$\int_0^1 \frac{\text{Li}_2^2(x)}{x} dx = 2\zeta(2)\zeta(3) - 3\zeta(5);$$

(e)
$$\int_0^1 \frac{\ln x \ln(1-x)\text{Li}_2(x)}{x} dx = \zeta(2)\zeta(3) - \frac{3}{2}\zeta(5)$$
.

PROOF. (a) We have

$$\int_0^1 \frac{x \ln x}{1 - x} dx = \int_0^1 x \ln x \left(\sum_{n=0}^\infty x^n \right) dx = \sum_{n=0}^\infty \int_0^1 x^{n+1} \ln x dx$$
$$= -\sum_{n=0}^\infty \frac{1}{(n+2)^2} = 1 - \zeta(2).$$

(b) We have

$$\int_{0}^{1} \frac{\ln x \ln(1-x)}{x} dx = \int_{0}^{1} \frac{\ln x}{x} \left(-\sum_{n=1}^{\infty} \frac{x^{n}}{n} \right) dx$$
$$= -\sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{1} x^{n-1} \ln x dx = \zeta(3).$$

(c) We have

$$\int_0^1 \frac{\text{Li}_2(x)}{x} dx = \int_0^1 \frac{1}{x} \left(\sum_{n=1}^\infty \frac{x^n}{n^2} \right) dx = \sum_{n=1}^\infty \frac{1}{n^2} \int_0^1 x^{n-1} dx = \zeta(3).$$

The integrals in parts (d) and (e) are recorded in [3, Entry 1, Table 2, p.1435, Entry 2, Table 6, p.1436].

The next lemma is about calculating two Euler series and a quadratic series involving the tail of $\zeta(2)$.

LEMMA 2. The following equalities hold:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^3} \left(1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \right) = -\frac{9}{2} \zeta(5) + 3\zeta(2)\zeta(3);$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \left(1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \right) = \frac{7}{4} \zeta(4);$$

(c)
$$\sum_{n=1}^{\infty} \left(\zeta(2) - 1 - \frac{1}{2^2} - \dots - \frac{1}{n^2} \right)^2 = 3\zeta(3) - \frac{5}{2}\zeta(4)$$
.

PROOF. (a) This part of the lemma is a special case of a more general result concerning the evaluation of Euler type series [2, Theorem 3.1, p.22].

(b) We apply Abel's summation formula (1) with $a_n = \frac{1}{n^2}$ and $b_n = 1 + \frac{1}{2^2} + \cdots + \frac{1}{n^2}$. We have

$$s = \sum_{n=1}^{\infty} \frac{1}{n^2} \left(1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \right)$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \right) \left(1 + \frac{1}{2^2} + \dots + \frac{1}{(n+1)^2} \right)$$

$$- \sum_{n=1}^{\infty} \frac{1}{(n+1)^2} \left(1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \right)$$

$$= \zeta^2(2) - \sum_{n=1}^{\infty} \frac{1}{(n+1)^2} \left(1 + \frac{1}{2^2} + \dots + \frac{1}{(n+1)^2} \right) + \sum_{n=1}^{\infty} \frac{1}{(n+1)^4}$$

$$= \zeta^2(2) - s + 1 + \zeta(4) - 1$$

$$= \frac{7}{2} \zeta(4) - s,$$

and part (b) of the lemma is proved.

We used that $\zeta^2(2) = \frac{5}{2}\zeta(4)$ since $\zeta(2) = \frac{\pi^2}{6}$ and $\zeta(4) = \frac{\pi^4}{90}$ [6, p.605]. (c) The evaluation of this quadratic series involving the tail of $\zeta(2)$ can be found in

(c) The evaluation of this quadratic series involving the tail of $\zeta(2)$ can be found in [4, Problem 3.22, p.142], [5, Theorem 1, (a)].

Now we are ready to prove Theorem 1.

PROOF. (a) First we note that if k > 0 is a real number then

$$\int_0^1 x^{k-1} \ln x \, dx = -\frac{1}{k^2},$$

and this implies that

$$\zeta(2) - 1 - \frac{1}{2^2} - \dots - \frac{1}{n^2} = \sum_{m=1}^{\infty} \frac{1}{(n+m)^2}$$

$$= -\sum_{m=1}^{\infty} \int_0^1 x^{n+m-1} \ln x \, dx$$

$$= -\int_0^1 x^n \ln x \left(\sum_{m=1}^{\infty} x^{m-1}\right) dx$$

$$= -\int_0^1 \frac{x^n}{1-x} \ln x \, dx.$$

It follows that

$$T \equiv \sum_{n=1}^{\infty} \frac{1}{n} \left(\zeta(2) - 1 - \frac{1}{2^2} - \dots - \frac{1}{n^2} \right)^2$$

$$= \sum_{n=1}^{\infty} \frac{1}{n} \left(\int_0^1 \frac{x^n}{1-x} \ln x \, dx \right) \left(\int_0^1 \frac{y^n}{1-y} \ln y \, dy \right)$$

$$= \int_0^1 \int_0^1 \frac{\ln x \ln y}{(1-x)(1-y)} \sum_{n=1}^{\infty} \frac{(xy)^n}{n} dx dy = -\int_0^1 \int_0^1 \frac{\ln x \ln y \ln(1-xy)}{(1-x)(1-y)} dx dy.$$

We have

$$I = \int_0^1 \int_0^1 \frac{\ln x \ln y \ln(1 - xy)}{(1 - x)(1 - y)} dx dy = \int_0^1 \frac{\ln x}{1 - x} \left(\int_0^1 \frac{\ln y \ln(1 - xy)}{1 - y} dy \right) dx.$$

We calculate the inner integral by parts, with $f(y) = \ln(1 - xy)$, $f'(y) = -\frac{x}{1-xy}$, $g'(y) = \frac{\ln y}{1-y}$, $g(y) = -\ln y \ln(1-y) - \text{Li}_2(y)$, and we have

$$\int_0^1 \frac{\ln y \ln(1-xy)}{1-y} dy = -\ln(1-xy)(\ln y \ln(1-y) + \text{Li}_2(y)) \Big|_{y=0}^{y=1}$$

$$-\int_0^1 \frac{x}{1-xy} (\ln y \ln(1-y) + \text{Li}_2(y)) \, dy$$

$$= -\zeta(2) \ln(1-x) - \int_0^1 \frac{x}{1-xy} (\ln y \ln(1-y) + \text{Li}_2(y)) \, dy.$$

It follows, based on part (b) of Lemma 1, that

$$I = -\zeta(2) \int_0^1 \frac{\ln x \ln(1-x)}{1-x} dx$$
$$-\int_0^1 \int_0^1 \frac{x \ln x}{(1-x)(1-xy)} \left(\ln y \ln(1-y) + \text{Li}_2(y)\right) dx dy$$
$$= -\zeta(2)\zeta(3) - \int_0^1 \int_0^1 \frac{x \ln x}{(1-x)(1-xy)} \left(\ln y \ln(1-y) + \text{Li}_2(y)\right) dx dy.$$

We calculate the double integral as follows

$$\mathcal{J} = \int_0^1 \int_0^1 \frac{x \ln x}{(1-x)(1-xy)} \left(\ln y \ln(1-y) + \text{Li}_2(y) \right) dx dy$$
$$= \int_0^1 \left(\ln y \ln(1-y) + \text{Li}_2(y) \right) \left(\int_0^1 \frac{x \ln x}{(1-x)(1-xy)} dx \right) dy.$$

Using part (a) of Lemma 1 the inner integral becomes

$$\int_{0}^{1} \frac{x \ln x}{(1-x)(1-xy)} dx = \int_{0}^{1} \frac{x \ln x}{1-y} \left(\frac{1}{1-x} - \frac{y}{1-xy}\right) dx$$

$$= \frac{1}{1-y} \int_{0}^{1} \frac{x \ln x}{1-x} dx - \frac{1}{1-y} \int_{0}^{1} \frac{xy \ln x}{1-xy} dx$$

$$= \frac{1-\zeta(2)}{1-y} + \frac{1}{1-y} \left(\int_{0}^{1} \ln x dx - \int_{0}^{1} \frac{\ln x}{1-xy} dx\right)$$

$$= -\frac{\zeta(2)}{1-y} - \frac{1}{1-y} \int_{0}^{1} \frac{\ln x}{1-xy} dx.$$

Using the substitution 1 - xy = t, we get that

$$\int_0^1 \frac{\ln x}{1 - xy} dx = -\frac{1}{y} \int_1^{1 - y} \frac{\ln(1 - t) - \ln y}{t} dt$$
$$= -\frac{1}{y} \left(\int_1^{1 - y} \frac{\ln(1 - t)}{t} dt - \ln y \ln(1 - y) \right)$$

On the other hand,

$$\int_{1}^{1-y} \frac{\ln(1-t)}{t} dt = \int_{0}^{1-y} \frac{\ln(1-t)}{t} dt - \int_{0}^{1} \frac{\ln(1-t)}{t} dt$$
$$= -\text{Li}_{2}(1-y) + \text{Li}_{2}(1)$$

$$= \zeta(2) - \text{Li}_2(1-y),$$

and it follows, based on formula (2), that

$$\int_0^1 \frac{\ln x}{1 - xy} dx = -\frac{1}{y} \left(\zeta(2) - \text{Li}_2(1 - y) - \ln y \ln(1 - y) \right) = -\frac{\text{Li}_2(y)}{y}.$$

Therefore

$$\int_0^1 \frac{x \ln x}{(1-x)(1-xy)} dx = -\frac{\zeta(2)}{1-y} + \frac{\text{Li}_2(y)}{y(1-y)},$$

and this in turn implies that

$$\mathcal{J} = \int_{0}^{1} (\ln y \ln(1-y) + \text{Li}_{2}(y)) \left(\frac{\text{Li}_{2}(y)}{y(1-y)} - \frac{\zeta(2)}{1-y} \right) dy
= \int_{0}^{1} (\ln y \ln(1-y) + \text{Li}_{2}(y)) \left(\frac{\text{Li}_{2}(y)}{y} + \frac{\text{Li}_{2}(y) - \zeta(2)}{1-y} \right) dy
= \int_{0}^{1} \frac{\ln y \ln(1-y) \text{Li}_{2}(y)}{y} dy + \int_{0}^{1} \frac{\text{Li}_{2}^{2}(y)}{y} dy
+ \int_{0}^{1} (\ln y \ln(1-y) + \text{Li}_{2}(y)) \frac{\text{Li}_{2}(y) - \zeta(2)}{1-y} dy.$$
(3)

Using Lemma 1 combined to $\ln y \ln(1-y) + \text{Li}_2(y) = \zeta(2) - \text{Li}_2(1-y)$, we have that

$$\int_{0}^{1} (\ln y \ln(1-y) + \text{Li}_{2}(y)) \frac{\text{Li}_{2}(y) - \zeta(2)}{1-y} dy$$

$$= \int_{0}^{1} \frac{(\zeta(2) - \text{Li}_{2}(1-y)) (\text{Li}_{2}(y) - \zeta(2))}{1-y} dy \quad (y \to 1-y)$$

$$= \int_{0}^{1} \frac{(\zeta(2) - \text{Li}_{2}(y)) (\text{Li}_{2}(1-y) - \zeta(2))}{y} dy$$

$$= \int_{0}^{1} \frac{(\zeta(2) - \text{Li}_{2}(y)) (-\text{Li}_{2}(y) - \ln y \ln(1-y))}{y} dy \text{ by (2)}$$

$$= -\zeta(2) \int_{0}^{1} \frac{\text{Li}_{2}(y)}{y} dy - \zeta(2) \int_{0}^{1} \frac{\ln y \ln(1-y)}{y} dy$$

$$+ \int_{0}^{1} \frac{\text{Li}_{2}^{2}(y)}{y} dy + \int_{0}^{1} \frac{\text{Li}_{2}(y) \ln y \ln(1-y)}{y} dy$$

$$= -2\zeta(2)\zeta(3) + \int_{0}^{1} \frac{\text{Li}_{2}^{2}(y)}{y} dy + \int_{0}^{1} \frac{\text{Li}_{2}(y) \ln y \ln(1-y)}{y} dy. \quad (4)$$

We obtain in view of (3), (4) and parts (d) and (e) of Lemma 1 that

$$\mathcal{J} = 2 \int_0^1 \frac{\ln y \ln(1-y) \text{Li}_2(y)}{y} dy + 2 \int_0^1 \frac{\text{Li}_2^2(y)}{y} dy - 2\zeta(2)\zeta(3)
= 4\zeta(2)\zeta(3) - 9\zeta(5),$$

and hence

$$I = -\zeta(2)\zeta(3) - \mathcal{J} = 9\zeta(5) - 5\zeta(2)\zeta(3).$$

Since T = -I we get that part (a) of the theorem is proved.

(b) We apply Abel's summation formula (1) with $a_n = n$ and $b_n = x_n^3$ where

$$x_n = \psi'(n) = \frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \dots$$

A calculation shows that

$$b_n - b_{n+1} = \left(\frac{1}{n^2} + x_{n+1}\right)^3 - x_{n+1}^3 = \frac{1}{n^6} + \frac{3}{n^4}x_{n+1} + \frac{3}{n^2}x_{n+1}^2,$$

and we have

$$\sum_{n=1}^{\infty} n \left(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \cdots \right)^3 = \lim_{n \to \infty} \frac{n(n+1)}{2} \left(\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \cdots \right)^3$$

$$+ \frac{1}{2} \sum_{n=1}^{\infty} n(n+1) \left(\frac{1}{n^6} + \frac{3}{n^4} x_{n+1} + \frac{3}{n^2} x_{n+1}^2 \right)$$

$$= \frac{1}{2} \zeta(4) + \frac{1}{2} \zeta(5) + \frac{3}{2} \sum_{n=1}^{\infty} \frac{x_{n+1}}{n^2} + \frac{3}{2} \sum_{n=1}^{\infty} \frac{x_{n+1}}{n^3}$$

$$+ \frac{3}{2} \sum_{n=1}^{\infty} x_{n+1}^2 + \frac{3}{2} \sum_{n=1}^{\infty} \frac{x_{n+1}^2}{n}.$$
 (5)

The preceding limit is 0 since

$$n(n+1) \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots \right]^3$$

$$< n(n+1) \left[\frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \dots \right]^3 < \frac{n+1}{n^2},$$

and the limit follows based on the Squeeze Theorem.

Since

$$x_{n+1} = \psi'(n+1) = \zeta(2) - 1 - \frac{1}{2^2} - \dots - \frac{1}{n^2},$$

we have, based on parts (a) and (b) of Lemma 2, that

$$\sum_{n=1}^{\infty} \frac{x_{n+1}}{n^2} = \sum_{n=1}^{\infty} \frac{\zeta(2) - 1 - \frac{1}{2^2} - \dots - \frac{1}{n^2}}{n^2}$$

$$= \zeta^2(2) - \sum_{n=1}^{\infty} \frac{1}{n^2} \left(1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \right)$$

$$= \frac{5}{2} \zeta(4) - \frac{7}{4} \zeta(4)$$

$$= \frac{3}{4}\zeta(4) \tag{6}$$

and

$$\sum_{n=1}^{\infty} \frac{x_{n+1}}{n^3} = \sum_{n=1}^{\infty} \frac{\zeta(2) - 1 - \frac{1}{2^2} - \dots - \frac{1}{n^2}}{n^3}$$

$$= \zeta(2)\zeta(3) - \sum_{n=1}^{\infty} \frac{1}{n^3} \left(1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \right)$$

$$= \zeta(2)\zeta(3) - \left(-\frac{9}{2}\zeta(5) + 3\zeta(2)\zeta(3) \right)$$

$$= -2\zeta(2)\zeta(3) + \frac{9}{2}\zeta(5). \tag{7}$$

Combining (5), (6), (7), part (c) of Lemma 2 and part (a) of Theorem 1 we have

$$\sum_{n=1}^{\infty} n \left(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots \right)^3 = \frac{9}{2} \zeta(3) - \frac{17}{8} \zeta(4) - \frac{25}{4} \zeta(5) + \frac{9}{2} \zeta(2) \zeta(3),$$

and the theorem is proved.

A challenging problem would be to evaluate the alternating versions of the series in Theorem 1. We leave this as an open problem to the interested reader.

Acknowledgment. The author thanks Alina Sîntămărian for suggesting the problem of evaluating the cubic series in the second part of Theorem 1.

References

- D. D. Bonar and M. J. Koury, Real Infinite Series, Classroom Resource Materials. Mathematical Association of America, Washington, DC, 2006.
- [2] P. Flajolet and B. Salvy, Euler sums and contour integral representations, Experiment. Math., 7(1998), 15–35.
- [3] P. Freitas, Integrals of polylogarithmic functions, recurrence relations, and associated Euler sums, Math. Comp., 74(2005), 1425–1440
- [4] O. Furdui, Limits, Series and Fractional Part Integrals. Problems in Mathematical Analysis. Problem Books in Mathematics. Springer, New York, 2013.
- [5] O. Furdui and A. Sîntămărian, Quadratic series involving the tail of $\zeta(k)$, Integral Transforms Spec. Funct. 26(2015), 1–8.
- [6] F. W. J. Olver (ed.), D. W. Lozier (ed.), R. F. Boisvert (ed.) and C. W. Clark (ed.), NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010.
- [7] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, 2001.

- [8] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, Amsterdam, 2012.
- [9] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4^{th} ed., The University Press, Cambridge, 1927.