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Abstract

The paper is about calculating the quadratic series

o] 2 [ee]
Si(em-1-f - k) =S Ly
and the cubic series
n?  (n+1)2 N ’

n=1

where 1 denotes the digamma function.

1 Introduction and the Main Result

Throughout this paper, let C, Z; , N denote the sets of complex numbers, nonpositive
integers, positive integers respectively. The celebrated Riemann zeta function ( is a
function of a complex variable [9, p.265] defined by

oo

1 1 1
Zn—_1+—+3—z+ ot (RG> D).

When z = 2 one has that the Riemann zeta function value ((2) is defined by the series

formula
=1 1 1
E 72_ _}_7_’_732_’_ —I—fnz-i----.

The trigamma function 1[/ is defined by [7, p.22]
2

Y(:) = 5 10gT(2) = 76() (2 €C\Zg),
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188 The Evaluation of a Quadratic and a Cubic Series

¥(2) being the ¢ (or digamma) function defined by 1(z) = L logT'(2) = FF/((ZZ)) or,

in terms of the generalized (or Hurwitz) zeta function ((s,a) defined by ((s,a) :=
kzom (éR(S) > 1, G;E(C\Za)7

€(2,2) (2eC\Zgy).
kZ:O k+z ( )
This implies that
oy 1 1 _ oo
w(n)—ﬁ+m+"'—g(2)_l_22 (n—1)2 (HEN\{l}).

Closed form evaluation of series involving (k) are collected in [7] and, more recently,
in [8]. Other series, linear or quadratic, involving the Riemann zeta function and
harmonic numbers, which are evaluated in terms of special constants can be found in
[4].

In this paper we evaluate a quadratic and a cubic series involving the tail of {(2).
More precisely, we calculate the quadratic series

Zi(« _1_212_..._;2> :Z%(d/(n—kl)b
n=1

and the cubic series
1 R
S (Gt ) =L

where 1 denotes the digamma function.
The main result of this paper is the following theorem.

THEOREM 1 (A quadratic and a cubic series with the tail of {(2)). The following
identities hold:

(a) 020 4 (€)= 1= g = = )" = 5(2)¢(3) — 9(5);
(b) XoZin (¥ (n))” = 5¢(3) = F¢(4) = 3¢(5) + 5¢(2)C(3).
We need in our analysis Abel’s summation formula [1, p.55], [4, p.258] which states

that if (an)n>1 and (b,)p>1 are two sequences of real or complex numbers and A4,, =
>or_, ak, then

Zakbk = Apbpy1 + ZAk(bk — bk+1) (n eN).
k=1 k=1
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We will also use, in our calculations, the infinite version of the preceding formula:

Z akbk = nlLHOIO(Anbn+1) + Z Ak(bk - bk+1)7 (1)
k=1 k=1

provided the infinite series on the right hand side of (1) converges and the limit is finite.
A special function which is used in the proof of part (a) of Theorem 1 is the
Dilogarithm function. Recall that the Dilogarithm function Liy is defined, for |z] < 1,

by [7, p.106]
) 2 2" “In(1—1)
Lis(2) = — = —/ ——=dt.
(2) ; el M

In particular, Lis(1) = {(2).
A special identity involving the Dilogarithm function is the following Landen type
formula:

¢(2) = Lis(1 — 2) = InzIn(1 — z) = Lis(2), (2)

whose proof can be found in [7, p.107].

2 Proof of the Main Result

In this section we collect some results we need for proving Theorem 1.

LEMMA 1 (Some logarithm and polylogarithm integrals). The following equalities
hold:

(a) Jy §mEde =1 - ¢(2);

(b) fy mEE=tde = ¢(3);

(0) Jo ¥ 2dx = ((3);

(@) fy B2 ar = 2¢(2)¢(3) - 3¢(5);

(e) [ Ineln(-nlia@) gy — ¢(2)¢(3) — 3¢(5).

PROOF. (a) We have

1 1 00 e’} 1
zlnzx
n _ n+1
A 1_$dx Axlnm (ng_oz )dx—ng_OA T In zdx
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(b) We have
1 _ 1 ©  n
/lnxln(l x)dm _ /nx(zx>dx
0 X 0 x el n
%) 1 1 »
= —Zf 2" Inxdr = ((3).
n:ln 0
(c) We have
! Liy () 1 (& a2 1 [ .
/Ode_/O = ;ﬁ dx—;rﬂ/ox dx = ((3).

The integrals in parts (d) and (e) are recorded in [3, Entry 1, Table 2, p.1435, Entry

2, Table 6, p.1436].

The next lemma is about calculating two Euler series and a quadratic series involv-

ing the tail of {(2).
LEMMA 2. The following equalities hold:
() 20y 7 (L4 97 + -+ 5) = =5C(5) +3C(2)CB);
() T 2 (14 4 ) = Sy

2

(@ Zot €@ -1—g - - ) =3((3) = 5C(4).

3

PROOF. (a) This part of the lemma is a special case of a more general result

concerning the evaluation of Euler type series [2, Theorem 3.1, p.22].

(b) We apply Abel’s summation formula (1) with a, = 2 and b, = 1455+ -+ .

We have
=1 1 1
5= Z2<1+22+ +2>
n=1
= owm (1L LY (1,1 1
-\t Ut Tt e

5 1 1 1 =

n=1

= @) -s+1+¢(4) -1
= 2w -
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and part (b) of the lemma is proved.

We used that ¢%(2) = 5¢(4) since ¢(2) = %2 and ((4) = g—; [6, p.605].

(¢) The evaluation of this quadratic series involving the tail of ((2) can be found in
[4, Problem 3.22, p.142], [5, Theorem 1, (a)].

Now we are ready to prove Theorem 1.

PROOF. (a) First we note that if k¥ > 0 is a real number then

! 1
/ zkillnxd:c:——Q,
0 k

and this implies that

1 1 =
2) -1 — — — ... — [
C() 22 n2 Z n+m

m=1

—Z/ 2"t Mngde
m=1 0

1 [eS)
—/ z"Inzx (Z xM1) dx
0

m=1

1 n
= —/ x Inz dx.
o 1—=

It follows that

T

Ii
(]
3=
/N
N
S
~—
|
—
|
N
|
|
3~
N—
[\

1 1 n 1 n
(/ x lnxd$> </ Y lnydy>
n\Jy 11—z 0o 1—
Lot lnxlny )" Inz Iny In( l—xy)
= dxdy = — / / dxdy.
/0 /0 (1—-z)(1 nzl (1-z)(1-y)

We have

I*/ / lnzlnyln y)dxdy_/l Inz /1 1nyln(17zy)dy d.
1—.%' y) 0o 11—z 0 1-y

We calculate the inner integral by parts, with f(y) = In(1 — zy), f'(y) = —1_‘”%,

I
WK

Jy) = lnz, g(y) = —Inyln(l — y) — Liz(y), and we have

/1 wdy = —In(l —zy)(lnyln(l — y) + Lia(y))
0 )
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_/0 : _”fmy (nym(1 —y) + Lis(y)) dy

1
- (@MW) - / (lnyn(1 —y) + Lis(y)) dy.

1—2ay

It follows, based on part (b) of Lemma 1, that

7 —C(Q)/ lnxln(l—x)dm

1—2x

/ / :clnx (InyIn(1 — y) + Lis(y)) dedy

(1—x)( y)

N / / (1— ;3111:1: ) (InyIn(1 — y) + Liz(y)) dedy.

We calculate the double integral as follows

xlnx )
J / / ) (InyIn(1 —y) + Lis(y)) daedy

1
rlnx
= (Inyln(1l —y) + Liza(y)) </ dm)d
/0 o (I—=)(1—zy)
Using part (a) of Lemma 1 the inner integral becomes
1 1
zlnz zlnz 1 Y
————dr = - d
/0 (1—-z)(1—=ay) * /0 1—y(1—m 1—wy) o
1 /1xlnxdx_ 1 /1 a:ylnxdx
-y Jo 1—-2 -y Jo 1—2y
_ 1 1
= 1 C(Q)—i— 1 (/ ln:rdx—/ I dx)
1—y 1=y \Jo o -y

1
_ @2 1 / Inx .
l—y 1=-yJo 1-xy

Using the substitution 1 — xy = ¢, we get that

1 1—1
1 1 YIn(l—1¢) -1
/ ne_ _f/ In(1—¢) —Iny ,
o 1—=y Y1 t

1 /ly In(1 —t) )
= —— ———=dt—Inyln(l—y) | .
Y ( 1 t ( )
On the other hand,

1-y _ 11—y _ 1 _
/ In(1—1¢) Qi - / In(1 —1¢) dt—/ In(1 t)dt
1 t 0 t 0 t
— “Lis(1— ) + Lis(1)
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= ((2) - Lix(1 —y),

and it follows, based on formula (2), that

' Inz —,l — i _ —lnwvln(l — 77L12(y)
[ = -2 ¢ - Lt - ) ~ Iyl - ) = ~ 20,

Therefore

l—o)(l—=zy)  1-y yl-y)

and this in turn implies that

1
J = /(lnylnl— ) + Lia(y ( 12y )y
0

1
1

_ /(lnylnl— )+ Lis(y 12(y L12 (2)>dy
0

Y
_ / InylIn(1 — y)Lis(y /1 Li2 (y
0 0 Y

+ | (=) + L <>>L12<§f)_‘y<<2)dy.

/1 zlnzx e — ¢(2) . Lis(y)
o (

3)
Using Lemma 1 combined to InyIn(1 — y) + Liz(y) = ¢{(2) — Liz(1 — y), we have that

/ (InyIn(1 —y) + Lia(y)) Md
0 y

/1 (¢(2) — Lig(1 — y)) (Lia(y) — 6(2))dy (y—1—1)
0 Ly
/1 (6(2) = Lis(y) (Lia(1 —y) = ¢(2) ;.
0 y
/1 (€(2) =~ Lia(y)) (~Lia(y) ~nyln(1 —y)) | - -y
0 y

S R e

+/1 Lig(y)d +/1 Lis(y)lnyln(l —y) .
0 Y 0 Y

17 B
= e + [ By [HROIRO D, )

0 0 Yy

Y

We obtain in view of (3), (4) and parts (d) and (e) of Lemma 1 that

B YInyIn(1 — y)Lia(y) " Li3(y) B
7 = 9 /O dy + 2 /O Ly —2(2)C(3)
= 4¢(2)¢ ( );
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and hence
I'=—¢(2)¢(3) =T =9¢(5) — 5¢(2)¢(3).

Since T' = —1I we get that part (a) of the theorem is proved.
(b) We apply Abel’s summation formula (1) with a,, = n and b, = > where

1 1

A calculation shows that

1 8 3 1 3 3 2
by, —bni1 = 2T Tt ST = gt T g T

and we have

i LS S ° NEICES) L s
il T N T —  lim
AV TR e 2 \mr 12 (nt2)p
1 o0
+§Z”(”+1) gt oatntrt an+1>
n=1
1 1 3 — Tpi1 3 - Tn+1
= — 4 _— p— —
n=1 n=1
3 Zwiﬂ T3 nﬂ (5)
n=1 n=1

The preceding limit is 0 since

n(n +1) {(n—&l)Q +(n+12)2 +...r

< 1) | —— : + Tontl
n(n 7
nn+1) (n+1)n+2) n?
and the limit follows based on the Squeeze Theorem.
Since ) .
Tl :w’(n+1):((2)—1—2—2—-~-—$,

we have, based on parts (a) and (b) of Lemma 2, that

ixm _ iw)— — = — Az
2 - 2
n=1 n n=1 n
=1 1 1
_ 2 -
— 4(2)77;:1 2<1+22+ +n2>
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and

LT R
n3 n3

n=1 n=1

— @) - (~500)+321)
= -2(2)03) + 505) @

Combining (5), (6), (7), part (c¢) of Lemma 2 and part (a) of Theorem 1 we have

o] 3
St e ) = 30— 540 - 46+ 300,

and the theorem is proved.
A challenging problem would be to evaluate the alternating versions of the series in
Theorem 1. We leave this as an open problem to the interested reader.
Acknowledgment. The author thanks Alina Sintdmaéarian for suggesting the prob-
lem of evaluating the cubic series in the second part of Theorem 1.
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