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Abstract

In this paper, we find the star chromatic number for the corona graph of path
with complete graph on the same order Pn ◦ Kn, path with cycle on the same
order Pn ◦ Cn, path on order n with star graph on order n + 1 say Pn ◦ K1,n,
path on order n with bipartite graph on order n1+n2 say Pn ◦Kn1,n2 and corona
graph of star graph on order n+1 with complete graph on order n say K1,n ◦Kn

respectively.

1 Introduction

The notion of star chromatic number was introduced by Branko Grünbaum in 1973.
A star coloring [1, 4, 5] of a graph G is a proper vertex coloring in which every path
on four vertices uses at least three distinct colors. Equivalently, in a star coloring, the
induced subgraphs formed by the vertices of any two colors has connected components
that are star graphs. The star chromatic number χs (G) of G is the least number of
colors needed to star color G.
Guillaume Fertin et al. [5] gave the exact value of the star chromatic number of

different families of graphs such as trees, cycles, complete bipartite graphs, outerplanar
graphs, and 2-dimensional grids. They also investigated and gave bounds for the star
chromatic number of other families of graphs, such as planar graphs, hypercubes, d-
dimensional grids (d ≥ 3), d-dimensional tori (d ≥ 2), graphs with bounded treewidth,
and cubic graphs.
Albertson et al. [1] showed that it is NP-complete to determine whether χs (G) ≤ 3,

even when G is a graph that is both planar and bipartite. The problems of finding star
colorings is NP-hard and remain so even for bipartite graphs [9, 10]. For some works
related to the application and the algorithmic approach on star colorings we refer to
[2].
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2 Preliminaries

Graph products are interesting and useful in many situations [8]. The corona of two
graphs G1 and G2 is the graph G = G1 ◦G2 formed from one copy of G1 and |V (G1)|
copies of G2 where the ith vertex of G1 is adjacent to every vertex in the ith copy of
G2. This kind of product was introduced by Harary and Frucht in 1970 [7]. Additional
graph theory terminology used in this paper can be found in [3, 6].
In the following section, we find the star chromatic number for the corona graph

of path with complete graph on the same order Pn ◦Kn, path with cycle on the same
order Pn ◦ Cn, path on order n with star graph on order n+ 1 say Pn ◦K1,n, path on
order n with bipartite graph on order n1+n2 say Pn ◦Kn1,n2 and corona graph of star
graph on order n+ 1 with complete graph on order n say K1,n ◦Kn respectively.

In order to prove our results, we shall use the following Theorems by Guillaume et
al. [5].

THEOREM 1 ([5]). If Cn is a cycle with n ≥ 3 vertices, then

χs(Cn) =

{
4 when n = 5,
5 otherwise.

THEOREM 2 ([5]). Let Kn,m be a complete bipartite graph. Then

χs(Kn,m) = min {m,n}+ 1.

3 Star Coloring on Corona Graphs

In this section, we prove our main theorems.

THEOREM 3. For any n ≥ 2, χs(Pn ◦Kn) = n+ 2.

PROOF. Let V (Pn) = {v1, v2, . . . , vn} and V (Kn) = {u1, u2, . . . , un}. Let

V (Pn ◦Kn) = {vi : 1 ≤ i ≤ n} ∪ {uij : 1 ≤ i ≤ n; 1 ≤ j ≤ n} .

By the definition of corona graph, each vertex of Pn is adjacent to every vertex of
a copy of Kn i.e., every vertex vi ∈ V (Pn) is adjacent to every vertex from the set
{uij : 1 ≤ i ≤ n; 1 ≤ j ≤ n}.

Assign the following n+ 2-coloring for Pn ◦Kn as star chromatic:

(i) For 1 ≤ i ≤ n, assign the color ci to vi.

(ii) For 1 ≤ i ≤ n; 1 ≤ j ≤ n, assign the color ci+j to uij ∀ i+ j ≤ n+ 2.

(iii) For 1 ≤ i ≤ n; 1 ≤ j ≤ n, if i+ j > n+ 2 assign the coloring as follows:

(a) c1 to uij if i+ j ≡ 1 mod (n+ 2).
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(b) c2 to uij if i+ j ≡ 2 mod (n+ 2).
. . . . . . . . .
. . . . . . . . .

(c) cn+1 to uij if i+ j ≡ (n+ 1) mod (n+ 2).

Therefore, χs(Pn ◦Kn) ≤ n+ 2.
To prove χs(Pn ◦Kn) ≥ n+2. Let us assume that χs(Pn ◦Kn) is less than n+2 i.e.,

χs(Pn ◦Kn) = n + 1. We must assign n + 1 colors for {v1, u1i : 1 ≤ i ≤ n} for proper
star coloring, since {v1, u1i : 1 ≤ i ≤ n} induces a clique of order n+ 1 (say Kn+1). If
we assign the same n + 1 colors to the another clique induced by the second copy of
Kn, {v2, u2i : 1 ≤ i ≤ n} then an easy check shows that one of the path on 4 vertices
between these cliques is bicolored. This is a contradiction, star coloring with n + 1
colors is impossible. Thus, χs(Pn ◦Kn) ≥ n + 2. Hence, χs(Pn ◦Kn) = n + 2. This
completes the proof of the theorem.

THEOREM 4. For any n ≥ 3,

χs(Pn ◦ Cn) =
{
6 if n = 5,
5 otherwise.

PROOF. Let V (Pn) = {v1, v2, . . . , vn}, V (Cn) = {u1, u2, . . . , un}, and

V (Pn ◦ Cn) = {vi : 1 ≤ i ≤ n} ∪ {uij : 1 ≤ i ≤ n; 1 ≤ j ≤ n} .

By the definition of corona graph, each vertex of Pn is adjacent to every vertex of a
copy of Cn i.e., every vertex of V (Pn) is adjacent to every vertex from the set V (Cn).
Let C(1)n , C

(2)
n , C

(3)
n , . . . , C

(n)
n be the n copies of the cycle Cn. We consider the following

cases.
Case(i): n = 5. Assign the following 6-coloring for Pn ◦ Cn as star-chromatic:

• For 1 ≤ i ≤ 5, assign the color ci to vi.

• For i ∈ {2, 3, 4, 5}, assign the color ci to u1i.

• For i ∈ {3, 4, 5}, assign the color ci to u2i.

• For i ∈ {1, 4, 5}, assign the color ci to u3i.

• For i ∈ {1, 2, 5}, assign the color ci to u4i.

• For i ∈ {1, 2, 3}, assign the color ci to u5i.

• For 1 ≤ i ≤ 5, assign the color c6 to uii.

For the vertices u21, u32, u43, u54 assign the colors c3, c4, c5, c2 respectively. Thus
χs(Pn ◦ Cn) ≤ 6.
To prove χs(Pn◦Cn) ≥ 6. Let us assume that χs(Pn◦Cn) is less than 6 i.e., χs(Pn◦

Cn) = 5. We must assign 5 colors for {v1, u1i : 1 ≤ i ≤ n}, since {u1i : 1 ≤ i ≤ n} is a
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cycle of order 5, by Theorem 1 it needs 4 distinct colors for proper star coloring and
v1 is adjacent to each {u1i : 1 ≤ i ≤ n}. If we assign the same 5 colors for the another
set of vertices {v2, u2i : 1 ≤ i ≤ n}, then an easy check shows that one of the path on
4 vertices between these two set of vertices is bicolored. This is a contradiction. Thus,
χs(Pn ◦ Cn) ≥ 6. Hence, χs(Pn ◦ Cn) = 6 for n = 5.

Case(ii): n 6= 5. Assign the following 5-coloring as star-chromatic for Pn ◦ Cn:

• For 1 ≤ i ≤ 5, assign the color ci to vi.

• For i ∈ {6, 7, . . . , n} assign the color ck, 1 ≤ k ≤ 5 to all such vertices vi that
i ≡ k mod 5.

• Color the vertices of V (C(1)n ), V (C(5)n ), V (C(9)n ),. . . with colors c2, c3, c4, alterna-
tively.

• Color the vertices of V (C(2)n ), V (C(6)n ), V (C(10)n ),. . . with colors c3, c4, c5, alterna-
tively.

• Color the vertices of V (C(3)n ), V (C(7)n ), V (C(11)n ),. . . with colors c4, c5, c1, alterna-
tively.

• Color the vertices of V (C(4)n ), V (C(8)n ), V (C(12)n ),. . . with colors c5, c1, c2, alterna-
tively.

Therefore χs(Pn◦Cn) ≤ 5. To prove χs(Pn◦Cn) ≥ 5, let us suppose that χs(Pn◦Cn)
is less than 5 say χs(Pn◦Cn) = 4. We must assign 4 colors for {v1, u1i : 1 ≤ i ≤ n}, since
{u1i : 1 ≤ i ≤ n} is a cycle, by Theorem 1 it needs 3 colors for proper star coloring and
v1 is adjacent to each {u1i : 1 ≤ i ≤ n}. If we assign the same 4 colors to the another
set of vertices {v2, u2i : 1 ≤ i ≤ n} then an easy check shows that one of the path on 4
vertices between these set of vertices is bicolored. This is a contradiction, star coloring
with 4 colors is impossible. Thus, χs(Pn ◦ Cn) ≥ 5. Hence χs(Pn ◦ Cn) = 5, n 6= 5.
This completes the proof of the theorem.

THEOREM 5. Let n ≥ 3 be a positive integer. Then χs(Pn ◦K1,n) = 4.

PROOF. Let V (Pn) = {v1, v2, . . . , vn},

V (K1,n) = {ui, uij : 1 ≤ i ≤ n; 1 ≤ j ≤ n} ,

and

V (Pn ◦K1,n) = {vi : 1 ≤ i ≤ n} ∪ {ui : 1 ≤ i ≤ n}
∪ {uij : 1 ≤ i ≤ n; 1 ≤ j ≤ n} .

By the definition of corona graph, each vertex of Pn is adjacent to every vertex of a
copy of K1,n i.e., every vertex from the set V (Pn) is adjacent to every vertex from the
set V (K1,n).



Venkatesan et al. 101

• For 1 ≤ i ≤ n, color the vertices vi with colors c1, c2, c3, c4, alternatively.

• For 1 ≤ i ≤ n, color the vertices ui with colors c2, c3, c4, c1, alternatively.

• For 1 ≤ i ≤ 4; 1 ≤ j ≤ n, color the vertices uij with colors c3, c4, c1, c2, alterna-
tively.

• For 5 ≤ i ≤ n; 1 ≤ j ≤ n, color the vertices uij with color c3 if i ≡ 1 mod 4.

• For 5 ≤ i ≤ n; 1 ≤ j ≤ n, color the vertices uij with color c4 if i ≡ 2 mod 4.

• For 5 ≤ i ≤ n; 1 ≤ j ≤ n, color the vertices uij with color c1 if i ≡ 3 mod 4.

• For 5 ≤ i ≤ n; 1 ≤ j ≤ n, color the vertices uij with color c2 if i ≡ 0 mod 4.

Therefore χs(Pn ◦ K1,n) ≤ 4. To prove χs(Pn ◦ K1,n) ≥ 4, let us assume that
χs(Pn ◦ K1,n) is less than 4 i.e., χs(Pn ◦ K1,n) = 3. We must assign 3 colors for
{v1, u1, u1i : 1 ≤ i ≤ n}, since {u1, u1i : 1 ≤ i ≤ n} is a star graph and needs 2 col-
ors for proper star coloring and each {u1, u1i : 1 ≤ i ≤ n} is adjacent to v1 shows v1
needs one distinct color. If we use the same 3 colors for the another set of vertices
{v2, u2, u2i : 1 ≤ i ≤ n} then an easy check shows that one of the path on 4 vertices
is bicolored. This is a contradiction, star coloring with 3 colors is impossible. Thus,
χs(Pn ◦K1,n) ≥ 4. Hence, χs(Pn ◦K1,n) = 4. This completes the proof of the theorem.

THEOREM 6. For n ≥ 2 and n = n1 or n = n2, χs(Pn◦Kn1,n2) = min {n1, n2}+3.

PROOF. We consider the following cases.

Case(i): If n1 < n2. Let n = max {n1, n2} = n2. Let V (Pn) = {vi : 1 ≤ i ≤ n2},

V (Kn1,n2) = {uij : 1 ≤ i ≤ n2; 1 ≤ j ≤ n1} ∪ {wij : 1 ≤ i ≤ n2; 1 ≤ j ≤ n2}

and

V (Pn ◦Kn1,n2) = {vi : 1 ≤ i ≤ n} ∪ {uij : 1 ≤ i ≤ n2; 1 ≤ j ≤ n1}
∪ {wij : 1 ≤ i ≤ n2; 1 ≤ j ≤ n2} .

By the definition of corona graph, each vertex of Pn is adjacent to every vertex of a
copy of Kn1,n2 i.e., every vertex from set V (Pn) is adjacent to every vertex from the
set Kn1,n2 .
Assign the star coloring as follows:

• For 1 ≤ i ≤ n2, if i ≤ n1 + 3 color the vertex vi with color ci.

• For 1 ≤ i ≤ n2, if i > n1 + 3 color the vertex vi with cj if i ≡ j mod (n1 + 3),
1 ≤ j < n1 + 3.

• For 1 ≤ i ≤ n2, 1 ≤ j ≤ n1, color the vertex uij with ci+j if i+ j ≤ n1 + 3.

• For 1 ≤ i ≤ n2, 1 ≤ j ≤ n1, color the vertex uij with ci if i+ j ≡ i mod (n1 +3).
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• For 1 ≤ i ≤ 2, 1 ≤ j ≤ n2, if i+ j > n1 + 3 then color the vertex wij with ci+3.

• For 3 ≤ i ≤ n2, 1 ≤ j ≤ n2, color the vertex wij with one of the colors existing
such that c(wij) 6= {c(vi), c(vi−1)}.

Thus, χs(Pn ◦ Kn1,n2) ≤ n1 + 3, if n1 < n2. To prove χs(Pn ◦ Kn1,n2) ≥ n1 + 3,
let us assume that χs(Pn ◦Kn1,n2) < n1 + 3, say n1 + 2. By Theorem 2, χs(Kn1,n2) =
min {n1, n2}+1, so we need n1+1 colors to star color {u1i : 1 ≤ i ≤ n1;w1j : 1 ≤ j ≤ n2}
for a copy of Kn1,n2 .
The vertex v1 is adjacent to each of the vertices {u1i : 1 ≤ i ≤ n1;w1j : 1 ≤ j ≤ n2},

so we need n1+2 colors for proper star coloring of {v1, u1i : 1 ≤ i ≤ n1;w1j : 1 ≤ j ≤ n2}.
If we assign the same n1 + 2 colors to the set

{v2, u2i : 1 ≤ i ≤ n1;w2j : 1 ≤ j ≤ n2}

then one of the path on 4 vertices between these two set of vertices is bicolored, this
is a contradiction. Thus, χs(Pn ◦Kn1,n2) ≥ n1 + 3. Hence χs(Pn ◦Kn1,n2) = n1 + 3 if
n1 < n2.

Case(ii): If n2 < n1. Let n = max {n1, n2} = n1. Let V (Pn) = {vi : 1 ≤ i ≤ n1},

V (Kn1,n2) = {uij : 1 ≤ i ≤ n1; 1 ≤ j ≤ n1} ∪ {wij : 1 ≤ i ≤ n1; 1 ≤ j ≤ n2} ,

and

V (Pn ◦Kn1,n2) = {vi : 1 ≤ i ≤ n1} ∪ {uij : 1 ≤ i ≤ n1; 1 ≤ j ≤ n1}
∪ {wij : 1 ≤ i ≤ n1; 1 ≤ j ≤ n2} .

By the definition of corona graph, each vertex of Pn is adjacent to every vertex of a
copy of Kn1,n2 i.e., every vertex from the set V (Pn) is adjacent to every vertex from
the set Kn1,n2 .

Assign the star coloring as follows:

• For 1 ≤ i ≤ n1, if i ≤ n2 + 3 color the vertex vi with color ci.

• For 1 ≤ i ≤ n1, if i > n2+3 color the vertex vi with color cj if i ≡ j mod (n2+3),
1 ≤ j < n2 + 3.

• For 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, if i + j ≤ n2 + 3 color the vertex wij with ci+j if
i+ j ≤ n2 + 3.

• For 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, if i+ j > n2 + 3 then color the vertex wij with ci if
i+ j ≡ i mod (n2 + 3).

• For 1 ≤ i ≤ 2, 1 ≤ j ≤ n1, color the vertex uij with ci+3.

• For 3 ≤ i ≤ n1, 1 ≤ j ≤ n1, color the vertex uij with one of the colors existing
such that c(uij) 6= {c(vi), c(vi−1)}, 1 ≤ i ≤ n1; 1 ≤ j ≤ n1.
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Thus, χs(Pn ◦ Kn1,n2) ≤ n2 + 3, if n2 < n1. To prove χs(Pn ◦ Kn1,n2) ≥ n2 + 3,
let us assume that χs(Pn ◦Kn1,n2) < n2 + 3, say n2 + 2. By Theorem 2, χs(Kn1,n2) =
min {n1, n2}+1, so we need n2+1 colors to star color {u1i : 1 ≤ i ≤ n1;w1j : 1 ≤ j ≤ n2}
the vertices of Kn1,n2 .
The vertex v1 is adjacent to each of the vertices

{u1i : 1 ≤ i ≤ n1;w1j : 1 ≤ j ≤ n2} ,

so we need n2 + 2 colors for the proper star coloring of

{v1, u1i : 1 ≤ i ≤ n1;w1j : 1 ≤ j ≤ n2} .

If we assign the same n2 + 2 colors to the another set of vertices

{v2, u2i : 1 ≤ i ≤ n1;w2j : 1 ≤ j ≤ n2}

then one of the path on 4 vertices between these two set of vertices is bicolored, this
is a contradiction. Thus, χs(Pn ◦Kn1,n2) ≥ n2 + 3. Hence χs(Pn ◦Kn1,n2) = n2 + 3 if
n2 < n1. This completes the proof of the theorem.

THEOREM 7. For any n ≥ 3, χs(K1,n ◦Kn) = n+ 2.

PROOF. Let V (K1,n) = {v1, v2, . . . , vn+1} and V (Kn) = {u1, u2, . . . , un}. By the
definition of star graph, v1 is adjacent to each vertex {vi : 2 ≤ i ≤ n}. Let

V (K1,n ◦Kn) = {vi : 1 ≤ i ≤ n+ 1} ∪ {uij : 1 ≤ i ≤ n+ 1; 1 ≤ j ≤ n} .

By the definition of corona graph, each vertex of K1,n is adjacent to every vertex of a
copy of Kn i.e., every vertex vi ∈ V (K1,n) is adjacent to every vertex from the set

{uij : 1 ≤ i ≤ n+ 1; 1 ≤ j ≤ n} .

Assign the following n+ 2-coloring for K1,n ◦Kn as star chromatic:

• For 1 ≤ i ≤ n+ 1; 1 ≤ j ≤ n, assign the color cj to uij .

• For 2 ≤ i ≤ n+ 1, assign the color cn+1 to vi.

• For the vertex v1 assign color cn+2

Thus, χs(K1,n ◦Kn) ≤ n+ 2. To prove χs(K1,n ◦Kn) ≥ n+ 2, let us assume that
χs(K1,n ◦Kn) < n+2, say n+1. We must assign n+1 colors for {v1, u1i : 1 ≤ i ≤ n}
for proper star coloring, since {v1, u1i : 1 ≤ i ≤ n} induces a clique of order n + 1 say
Kn+1. If we assign the same n + 1 colors for the another clique {v2, u2i : 1 ≤ i ≤ n},
then an easy check shows that one of the path on 4 vertices between these two cliques
is bicolored. This is a contradiction, star coloring with n+1 colors is impossible. Thus,
χs(K1,n ◦Kn) ≥ n+2. Hence, χs(K1,n ◦Kn) = n+2. This completes the proof of the
theorem.
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