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Abstract

The object of this paper is to prove some fixed point theorems for two pairs
of self mappings satisfying generalized contractive condition by using the weak
subsequential continuity with compatibility of type (E) in metric spaces. We illus-
trate two examples to support the main result. Some applications concerning the
existence of a solution for systems of integral equations and systems of functional
equations are given.

1 Introduction.

Jungck [7] introduced the notion of commuting mappings to prove a common fixed
point theorem, two self mappings A and S of a metric space (X, d) are commuting
if ASx = SAx for all x ∈ X. Later, Sessa [19] defined that A and S are said to
be weakly commuting if for all x ∈ X, d(ASx, SAx) ≤ d(Sx,Ax). Jungck [8] gave
a generalization to the last notions as follows: A and S are said to be compatible if
limn→∞ d(ASxn, SAxn) = 0, where {xn} is a sequence in X such that limn→∞Axn =
limn→∞ Sxn = t for some t ∈ X.
It is well known that "commuting" implies "weakly commuting" implies compatible.

Jungck et al. [9] defined A and S are compatible mappings of type (A) if

lim
n→∞

d(ASxn, S
2xn) = 0 and lim

n→∞
d(SAxn, A

2xn) = 0,

whenever {xn} is a sequence in X such that limn→∞Axn = limn→∞ Sxn = t for some
t ∈ X. Pathak et al. [16, 17, 18] respectively defined two self mappings S and T to be

• compatible of type (B) if

lim
n→∞

d(SAxn, A
2xn) ≤ 1

2

[
lim
n→∞

d(St, SAxn) + lim
n→∞

d(St, S2xn)
]
,
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lim
n→∞

d(ASxn, S
2xn) ≤ 1

2

[
lim
n→∞

d(ASxn, At) + lim
n→∞

d(At,A2xn)
]
,

• compatible mappings of type (P) if limn→∞ d(A2xn, S
2xn) = 0,

• compatible mappings of type (C) if

lim
n→∞

d(ASxn, S
2xn) ≤ 1

3
[ lim
n→∞

d(ASxn, At)+ lim
n→∞

d(At, S2xn)+ lim
n→∞

d(At,A2xn)],

and

lim
n→∞

d(SAxn, A
2xn) ≤ 1

3
[ lim
n→∞

d(SAxn, St)+ lim
n→∞

d(St, S2xn)+ lim
n→∞

d(St, S2xn)],

whenever {xn} is a sequence in X such that limn→∞Axn = limn→∞ Sxn = t, for some
t ∈ X. Notice that, compatibility of type (A) implies compatibility of type (C), however
compatibility (compatibility of type (A), compatibility of type (B) and compatibility
of type (C)) are equivalent under the continuity of A and S.
Jungck and Rhoades [10] defined two self mappings A,S of space metric (X, d) to

be weakly compatibility if they commute at their coincidence points; i.e., if Au = Su
for some u ∈ X, then ASu = SAu.

2 Preliminaries

Singh et al. [21, 22] introduced the notion of compatibility of type (E) as follows.

DEFINITION 1. Two self mappings A and S of a metric space (X, d) are said to be
compatibility of type (E), if limn→∞ S2xn = limn→∞ SAxn = At and limn→∞A2xn =
limn→+∞ASxn = St, whenever {xn} is a sequence in X such that limn→∞Axn =
limn→∞ Sxn = t, for some t ∈ X.

REMARK 1. If At = St, then compatibility of type (E) implies compatibility
(compatibility of type (A), compatibility of type (B), compatibility of type (C), com-
patibility of type (P)), however the converse may be not true. Generally if {A,S} is
compatibility of type (E) implies compatibility of type (B).

DEFINITION 2. Two self mappings A and S of a metric space (X, d) are S-
compatibility (A-compatible) of type (E), if limn→∞ S2xn = limn→∞ SAxn = At (re-
spectively limn→∞A2xn = limn→∞ASxn = St) for some t ∈ X.

Notice that if A and S are compatible of type (E), then they are A-compatible and
S-compatible of type (E), but the converse is not true.

EXAMPLE 1. Consider X = R+ endowed with the Euclidian metric, we define
A,S as follows

Ax =

{
x for 0 ≤ x ≤ 2,
x+2
2 for x > 2,

and Sx =

{
4− x for 0 ≤ x ≤ 2,
1 for x > 2.
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Consider a sequence {xn} such that for each n ≥ 1, xn = 2 + e−n. Clearly that

lim
n→∞

Axn = lim
n→∞

Sxn = 2.

Also, we have
lim
n→∞

ASxn = lim
n→∞

A(2 + e−n) = 2 = A(2),

lim
n→∞

A2xn = lim
n→∞

A(2− e−n) = 2 = S(2).

Then {A,S} is S-compatible of type (E). On other hand we have

lim
n→∞

SAxn = lim
n→∞

S(2 + e−n) = 1 6= A(2),

which implies that {A,S} is never compatible of type (E).

Pant [14] introduced the notion of reciprocal continuity for a pair of mappings in
metric spaces.

DEFINITION 3. Two self mappings A and S of a metric space (X, d) are said to
be reciprocally continuous, if limn→∞ASxn = At and limn→∞ SAxn = St, whenever
{xn} is a sequence in X such that limn→∞Axn = limn→∞ Sxn = t, for some t ∈ X.

In 2009, Bouhadjera and Godet Thobie [5] introduced the concept of subsequential
continuity as follows

DEFINITION 4. Two self maps A and S of a metric space (X, d) is called to be
subsequentially continuous if there exists a sequence {xn} such that limn→∞Axn =
limn→∞ Sxn = t for some t ∈ X, limn→∞ASxn = At and limn→∞ SAxn) = St.

If A and S are continuous or reciprocally continuous, then they are subsequentially
continuous.
Motivated by Definition 4, we give the following definitions

DEFINITION 5. Let f and S to be two self mappings of a metric space (X, d),
the pair {A,S} is said to be weakly subsequentially continuous (wsc for short) if there
exists a sequence {xn} such that limn→∞Axn = limn→∞ Sxn = t, for some t ∈ X and
limn→∞ASxn = At, or limn→∞ SAxn = St.

DEFINITION 6. A pair {A,S} of mappings is said to be S-subsequentially con-
tinuous if there exists a sequence {xn} such that limn→∞Axn = limn→∞ Sxn = t for
some t ∈ X and limn→∞ SAxn = St.

DEFINITION 7. The pair {A,S} is said to be A-subsequentially continuous if there
exists a sequence {xn} such that limn→∞Axn = limn→∞ Sxn = t for some t ∈ X and
limn→∞ASxn = At.
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If the pair {A,S} is A-subsequentially continuous (or S-subsequentially continuous),
then it is wsc.

EXAMPLE 3. Let X = [0, 2] and d is the euclidian metric, we define A,S as follows

Ax =

{
1 for 0 ≤ x ≤ 1,
x
2 for 1 < x ≤ 2,

and Sx =

{
2− x, for 0 ≤ x ≤ 1,
x+ 1

2 , for 1 < x ≤ 2.

Consider a sequence {xn} such that for each n ≥ 1, xn = 1− 1
n . Clearly that

lim
n→∞

Axn = lim
n→∞

Sxn = 1.

Also we have

lim
n→∞

ASxn = lim
n→∞

A(1 +
1

n
) =

1

2
and lim

n→∞
SAxn = lim

n→∞
S(1) = 1.

Then {A,S} is S-subsequentially continuous so it is wsc, but and since A(1) 6= 1
2 it is

never subsequentially continuous.

Let Ψ be a set of all non-decreasing continuous functions ψR+ → R+, such ψ(x) = 0
and let Φ be a set of all lower semicontinuous functions φR+ → R+ such φ(x) = 0 if and
only if x = 0. The aim of this paper is to prove some common fixed point theorems for
generalized weak contractions and generalized contractions in metric spaces by using
the weak subsequential continuity and compatibility of type (E). Two examples are also
furnished to illustrate our results with two useful applications in solvability of systems
of integral equations and of functional equations.

3 Main Results

THEOREM 1. Let (X, d) be a metric space, A,B, S, TX → X are four self mappings
such for all x, y ∈ X we have

ψ(d(Sx, Ty)) ≤ ψ(M(x, y))− φ(M(x, y)), (1)

where

M(x, y) = max

{
d(Ax,By), d(Ax, Sx), d(By, Ty),

d(Ax, Ty) + d(By, Sx)

2

}
and ψ ∈ Ψ, φ ∈ Φ. If the two pairs {A,S} and {B, T} are weakly subsequentially
continuous (wsc) and compatible of type (E), then A,B, S and T have a unique common
fixed point in X.

PROOF. Since {A,S} is wsc (suppose that it is A-subsequentially continuous),
there exists a sequence {xn} in X such that limn→∞Axn = limn→∞ Sxn = z and
limn→∞ASxn = Az, again A and S are compatible of type (E), so

lim
n→∞

A2xn = lim
n→∞

ASxn = Sz and lim
n→∞

S2xn = lim
n→∞

SAxn = Az,
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which implies that Az = Sz. Also, for B and T and since {B, T} is wsc, there is a
sequence {yn} in X such that

lim
n→∞

Byn = lim
n→∞

Tyn = t and lim
n→∞

BTyn = Bt.

The pair {B, T} is compatible of type (E), then so

lim
n→∞

B2yn = lim
n→∞

BTyn = Tt and lim
n→∞

T 2yn = lim
n→∞

TByn = Bt,

which implies that Bt = Tt.
We prove Az = Bt. If not by using (1) we get

ψ(d(Az,Bt)) = ψ(d(Sz, T t)) ≤ ψ(M(x, y))− φ(M(x, y))

≤ ψ(max(d(Az,Bt), 0, 0, d(Az,Bt), d(Az,Bt)))

−φ(max(d(Az,Bt), 0, 0,
1

2
(d(Az,Bt) + d(Az,Bt)))

≤ ψ(d(Az,Bt))− φ(d(Az,Bt)) < ψ(d(Az,Bt)),

which is a contradiction. So Az = Sz = Bt = Tt.
Next, we will show that z = Az. If not by using (1) we get

ψ(d(Sxn, T t)) ≤ ψ(M(xn, t))− φ(M(xn, t)).

Letting n→∞, we obtain

ψ(z,Az) = ψ(d(z, T t))

≤ ψ(max(d(z,Az), 0, 0, d(z,Az))− φ(max(d(z,Az), 0, 0, d(z,Az))

< ψ(d(z,Az)),

which is a contradiction, then z = Az = Sz.
Now we claim z = t, if not by using (1) we get

ψ(d(Sxn, T yn)) ≤ ψ(M(xn, yn))− φ(M(xn, yn)).

Letting n→∞, we obtain

ψ(d(z, t)) ≤ ψ(max(d(z, t), 0, 0, d(z, t)))− φmax(d(z, t), 0, 0, d(z, t))

< ψ(d(z, t)),

which is a contradiction, then z = t so z is a common fixed point for A,B, S and T .
For the uniqueness, suppose there exists another fixed point w, by using (1) we get

ψ(d(z, w)) = ψ(d(Sz, Tw)) ≤ ψ(M(z, w))− φ(M(z, w))

≤ ψ(d(z, w))− φ(d(z, w)) < ψ(d(z, w)),

which is a contradiction, then z is unique.

If ψ(t) = t, we obtain the following corollary
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COROLLARY 1. Let (X, d) be a metric space and let A,B, S and T be self map-
pings such for all x, y ∈ X we have

d(Sx, Ty) ≤M(x, y)− φ(M(x, y)),

where φ ∈ Φ and

M(x, y) = max(d(Ax,By), d(Ax, Sx), d(By, Ty),
1

2
(d(Ax, Ty) + d(By, Sx))).

Assume that the two pairs {A,S} and {B, T} are wsc and compatible of type (E), then
A,B, S and T have a unique common fixed point in X.

If A = B and S = T, we get the following Corollary 2.

COROLLARY 2. For two self mappings A and S of a metric space (X, d) such that
for all x, y ∈ X we have

ψ(d(Sx, Sy)) ≤ ψ(max(d(Ax,Ay), d(Ax, Sx), d(Ay, Sy),
1

2
(d(Ax, Sy) + d(Ay, Sx)))

−φ(max(d(Ax,Ay), d(Ax, Sx), d((Ay, Sy),
1

2
(d(Ax, Sy) + d(Ay, Sx))).

If {A,S} is wsc and compatible of type (E), then A and S have a unique common fixed
point.

THEOREM 2. Let A,B, S and T be self mappings of a metric space (X, d) into
itself satisfying (1). Assume that

(i) {A,S} is A-subsequentially continuous and A-compatible of type (E).

(ii) {B, T} isB-subsequentially continuous and B-compatible of type (E).

Then A,B, S and T have a unique common fixed point in X.

Nextly, we will obtain the same results by using a generalized contractive condition.

THEOREM 3. Let A,B, S and T be mappings from a metric space (X, d) into itself
such that for all x, y ∈ X,

d(Sx, Ty)) ≤ ϕ(N(x, y)), (2)

where

N(x, y) = max(d(Ax,By), d(Ax, Sx), d(By, Ty), d(Ax, Ty), d(By, Sx)),

ϕ : R+ → R+ is non decreasing and upper semicontinuous function such ϕ(t) = 0 if
and only if t = 0 and for all t > 0, ϕ(t) < t. If the two pairs {A,S} and {B, T} are
wsc and compatible of type (E), then A,B, S and T have a common fixed point in X.
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PROOF. As in proof of Theorem 1 z is a coincidence point for A and S, also the
point t is a coincidence one for B and T , then we have

N(z, t) = max(d(Az,Bt), 0, 0, d(Az, T t), d(Bt, Sz)) = d(Az,Bt),

We claim Az = Bt. If not by using (2) we get

d(Az,Bt) = d(Sz, T t) ≤ ϕ(N(z, t)) < d(Az,Bt),

which is a contradiction, then Az = Sz = Bt = Tt.
Now, we will prove z = Az. If not by using (2) we get

(d(Sxn, T t) ≤ ϕ(N(xn, t)).

Letting n→∞, we obtain

d(z,Az) ≤ ϕ(max(d(z,Az), 0, 0, d(z,Az), d(z,Az)) < d(z,Az),

which is a contradiction, then z = Az = Sz.
We prove z = t. If not by using (2) we get

d(Sxn, Tyn)) ≤ ϕ(N(xn, yn)).

Letting n→∞, we obtain

d(z, t) ≤ ϕ(max(d(z, t), 0, 0, d(z, t), d(z, t)))) < d(z, t),

which is a contradiction, then z is a common fixed point for A,B, S and T .
For the uniqueness, it is similar as in Theorem 1.

If A = B and S = T , we obtain the following Corollary 3.

COROLLARY 3. Let (X, d) be a metric space and let A and S be two self mappings
satisfying for all x, y ∈ X

d(Sx, Sy) ≤ ϕ(max{d(Ax,Ay), d(Ax, Sx), d(Ay, Sy), d(Ax, Sy), d(Ay, Sx)}.

If the pair {A,S} is wsc and compatible of type (E), then A and S have a unique
common fixed point.

COROLLARY 4. For the self mappings A,B, S and T of a metric space (X, d) such
for all x, y ∈ X,

d(Sx, Ty) ≤ αmax(d(Ax,By), d(Ax, Sx), d(Ty,By), d(Ax, Ty), d(Ty,Ax))),

where 0 ≤ α < 1. If the pair {A,S} is A-subsequentially continuous and A-compatible
of type (E), also {B, T} is B-subsequentially continuous and B-compatible of type (E),
then A,B, S and T have a unique fixed point in X.

Corollary 4 improves and generalizes corollary 1 in paper [22] to four self mappings
of metric space.

THEOREM 4. Let A,B, S and T be mappings from a metric space (X, d) into itself
satisfying (1) or (2). If one of the following assumptions is satisfied:
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(i) the pair {A,S} is S-subsequentially continuous and S-compatible of type (E),
again {B, T} is T -subsequentially continuous and T -compatible of type (E),

(ii) {A,S}, {B, T} are compatible of type (E) and S-subsequentially continuous (
B-subsequentially continuous resp),

(iii) {A,S}, {B, T} are A-subsequentially continuous ( T -subsequentially continuous
resp) and A-compatible (T compatible resp) of type (E),

(iv) {A,S}, {B, T} are subsequentially continuous and S or A-compatible (T or B-
compatible resp) of type (E),

then A,B, S and T have a common fixed point in X.

EXAMPLE 3. Let X = R+ with the euclidian metric, define A,B, S and T by

Ax = Bx =

{
2− x for 0 ≤ x ≤ 1,
2x− 1 for x > 1,

and Sx = Tx =

{
x+1
2 for 0 ≤ x ≤ 1,

0 for x > 1.

Consider a sequence {xn} such for each n ≥ 1 we have

xn = 1− 1

n
.

It is clair that limn→∞Axn = limn→∞ Sxn = 1, also we have

lim
n→∞

ASxn = lim
n→∞

A(1− 1

2n
) = 1 = A(1),

lim
n→∞

A2xn = lim
n→∞

A(1 +
1

n
) = 1 = S(1),

then {A,S} is A-subsequentially continuous and A-compatible of type (E), but not
subsequentially continuous since

lim
n→∞

SAxn = lim
n→∞

S(1 +
1

2n
) = 0 6= S(1).

We will apply corollary 1 with φ(t) = 1
5 t, so for the inequality (1), we get the following.

1. For x, y ∈ [0, 1], we have

d(Sx, Ty) =
1

2
|x− y| ≤ 4

5
|x− y| = 4

5
d(Ax,Ay).

For x ∈ [0, 1] and y ∈ (1,∞), we have

d(Sx, Ty) =
1

2
|x+ 1| ≤ 2

5
|3− x| = 4

5
d(Ax, Sx).

2. For x > 1 and y ∈ [0, 1], we have

d(Sx, Ty) =
1

2

∣∣∣∣y + 1

2

∣∣∣∣ ≤ 2

5
|3− y| = 4

5
d(Ay, Sy).
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3. For x, y ∈ (1,∞), it is obviously sice d(Sx, Ty) = 0.

Consequently all hypotheses of corollary 1 are satisfied, and 1 is the unique common
fixed for A,B, S and T .

EXAMPLE 4. Let X = [0, 1] and d is the Euclidian metric. We define A,B, S and
T by

Ax =

{
x for 0 ≤ x ≤ 1

2 ,
3
4 for 1

2 < x ≤ 1,
Bx =

{
1− x for 0 ≤ x ≤ 1

2 ,
1 for 1

2 < x ≤ 1,

Sx =

{
2x+1
4 for 0 ≤ x ≤ 1

2 ,
1
4 for 1

2 < x ≤ 1,
and Tx =

{
1
2 for 0 ≤ x ≤ 1

2 ,
x
4 for 1

2 < x ≤ 1.

We consider a sequence {xn} defined for each n ≥ 2 by

xn =
1

2
− 1

n
.

Clearly that limn→∞Axn = 1
2 and limn→∞ Sxn = 1

2 , also we have

lim
n→∞

ASxn = lim
n→∞

A(
1

2
− 1

2n
) = A(

1

2
) = S(

1

2
) =

1

2
.

Then {A,S} is A-subsequentially continuous and A-compatible of type (E). On the
other hand consider a sequence defined by yn = 1

2 − e
−n for all n > 1. It is clear that

lim
n→∞

Byn = lim
n→∞

Txn =
1

2
and lim

n→∞
BTyn = B(

1

2
) = T (

1

2
) =

1

2
.

This yields that {B, T} is B-subsequentially continuous and B-compatible of type (E).
For the contractive condition, we have the following.

1. For x, y ∈ [0, 12 ], we have

d(Sx, Ty) =
1

4
|2x− 1| ≤ 1

3
|2x− 1| = 2

3
d(Ax, Ty)

for x ∈ [0, 12 ] and y ∈ ( 12 , 1], we have

d(Sx, Ty) =
1

4
|2x− y + 1| ≤ 3

8
≤ 1

6
|4− y| = 2

3
d(By, Ty).

2. For x ∈ ( 12 , 1] and y ∈ [0, 12 ], we have

d(Sx, Ty) =
1

4
≤ 1

3
=

2

3
d(Ax, Sx).

3. For x, y ∈ ( 12 , 1], we have

d(Sx, Ty) =
1

4
|1− y| ≤ 1

2
=

2

3
d(By, Sx).

Consequently all hypotheses of corollary 4 with α = 2
3 are satisfied. Therefore

1
2 is

the unique common fixed for A,B, S and T .
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4 Applications

4.1 Existence of A Solution of Systems of Integral Equations

We will utilize Theorem 3 to assert the existence of a solution of the following system
of integral equations

x(t) = f(t) +

∫ b

a

Ki(t, s, x(s))ds for i = 1, 2 and t, s ∈ [a, b], (3)

where a, b ∈ R and KiI = [a, b] × I × R → R, where C(I,R) is the set of continuous
functions from I to R. It is clear that the space C(I,R) endowed with the metric

∀u, v ∈ C(I,R), d(u, v) = max |u− v|,

is a complete metric space

THEOREM 5. Assume that

(i) there exists a functions θI × I → R+ such for all x, y ∈ C(I,R), we have

|K1(t, s, x(s)−K2(t, s, y(s))| ≤ θ(t, s)ϕ(|x− y|),

where ϕ is non decreasing and non negative function such ϕ(x) = 0 if and only
if x = 0.

(ii) supt∈I
∫ b
a
θ(t, s)ds ≤ 1.

Then the system (3) have a unique common solution in C(I,R).

PROOF. Consider the two mappings

Sx(t) = f(t) +

∫ b

a

K1(t, s, x(s))ds, Tx(t) = f(t) +

∫ b

a

K2(t, s, x(s))ds, s, t ∈ [a, b],

where S, TC(I,R) → C(I,R), the system (3) has a common solution if and only if the
self-mappings S and T have a common fixed point in C(I,R), since f,Ki are continuous
so S, T are continuous, then {idC(I,R), S}, {idC(I,R), T} ( id the identity in the space
C(I,R)) are subsequentially continuous and compatible of type (E). Further we have

|Sx(t)− Ty(t)| =

∣∣∣∣∣
∫ b

a

|K1(t, s, x(s))−K2(t, s, y(s))ds

∣∣∣∣∣ ≤
∫ b

a

θ(t, s)ϕ(|x− y|)ds

≤ ϕ(|x− y|)
∫ b

a

θ(t, s)ds

≤ ϕ(max(d(x, y), d(x, Sx), d(y, Ty), d(x, Ty), d(y, Sx)).

Consequently all the hypotheses of theorem 3 (with A = B = idC(I,R)) hold. Then S
and T have a unique common fixed point and so the system (3) have a unique common
solution.
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4.2 Existence of A Solution of a System of Functional Equations

Let X,Y two Banach space and W ⊂ X, D ⊂ Y are state and decision space re-
spectively. B(W ) is the set of all bounded functions defined on W , endowed with the
following metric

∀f, g ∈ B(W ), d(f, g) = sup
x∈W

|f(x)− g(x)| .

Consider the following systems of functional equations arising in dynamic programming{
F (x) = supx∈W {u(x, t) +H(x, y, F (τ(x, y)))},
G(x) = supx∈W {u(x, t) +K(x, y,G(τ(x, y)))}. (4)

Putting {
Sf(t) = supx∈W {u(x, t) +H(x, y, f(τ(x, y)))},
T g(t) = supx∈W {u(x, y) +K(x, y, g(τ(x, y)))}.

THEOREM 6. Assume that the following hypotheses hold.

(a) H and K are bounded.

(b) For all x, y ∈W and f, g ∈ B(W ) there exists a non-decreasing and non negative
function ϕ such ϕ(x) = 0 if and only if x = 0 and

|H(x, y, f(τ(x, y)))−K(x, y, g(τ(x, y)))|
≤ ϕ(max(d(f, g), d(Sf, f), d(Tg, g), d(Sf, g), d(Tg, f))).

(c) There exists two sequences {fn} in w and f ∈ B(w) such that

lim
n→∞

sup |Sfn − f | = lim
n→∞

sup |fn − f | = 0 and lim
n→∞

sup |Sfn − Sf | = 0.

(d) There exists a sequence {gn} in W and g ∈ B(W ) such that

lim
n→∞

sup |Tgn − g| = lim
n→∞

sup |gn − g| = 0 and lim
n→∞

sup |Tgn − Tg| = 0.

Then the system (4) has a unique bounded solution.

PROOF. The system (4) have a unique solution if and only if the self mappings
S, T have a common fixed point.
Firstly the condition (a) implies that S and T are two self mappings from the metric

space (B(W ), d) into itself. For all f, g ∈ B(W ) and ε > 0, there exists y, z ∈ W such
that

Sf < u(x, y) +H(x, y, f(τ(x, y))) + ε, (5)

Tg < u(x, z) +K(x, z, g(τ(x, z))) + ε. (6)

Since
Sf ≥ u(x, z) +H(x, z, f(τ(x, z))) (7)
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and
Tg ≥ u(x, y) +K(x, y, g(τ(x, y))), (8)

we see that by (5) and (8), we get

Sf − Tg ≤ H(x, y, f(τ(x, y)))−K(x, y, g(τ(x, y))) + ε

≤ ϕ(max(d(f, g), d(Sf, f), d(Tg, g), d(Sf, g), d(Tg, f))) + ε. (9)

On the other hand and from (6) and (7) we get

Sf − Tg > H(x, y, f(τ(x, y)))−K(x, y, g(τ(x, y)))− ε
≥ −ϕ(max(d(f, g), d(Sf, f), d(Tg, g), d(Sf, g), d(Tg, f)))− ε. (10)

Consequently, (9) and (10) implies that

d(Sf, Tg) = sup |Sf − Tg| ≤ |H(x, y, f(τ(x, y)))−K(x, y, g(τ(x, y)))|+ ε

≤ ϕ(max(d(f, g), d(Sf, f), d(Tg, g), d(Sf, g), d(Tg, f))) + ε

since the last inequality is true for any arbitrary ε > 0, we can write

d(Sf, Tg) ≤ ϕ(max(d(f, g), d(Sf, f), d(Tg, g), d(Sf, g), d(Tg, f))), (11)

the condition (c) implies that {idB(W ), S} is S-subsequentially continuous and com-
patible of type (E), as well as the pair {idB(W ), T} is T -subsequentially continuous and
compatible of type (E) from (d). Consequently all the conditions of theorem 3 (with
A = B = idB(W )) are satisfied, S, T have a unique common fixed point in B(W ) and
this point is a solution of the system of functional equations (4).
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