On The Connection Problem Between Two Classical Orthogonal Polynomial Sequences*

Imed Ben Salah ${ }^{\dagger}$

Received 16 December 2014

Abstract

In this paper, we solve the following connection problem $$
\Phi(x) Q_{n}(x)=\sum_{k=0}^{n+\operatorname{deg} \Phi} \lambda_{n, k} P_{k}(x) \text { for } n \geq 0
$$ where $\left\{P_{n}\right\}_{n \geq 0}$ and $\left\{Q_{n}\right\}_{n \geq 0}$ are two MOPS and Φ is a monic polynomial. We establish a method for computing the coefficient $\lambda_{n, k}$ step by step. As application, we apply this process for some continuous, discrete and quantum classical MOPS with the choice $\operatorname{deg} \Phi \leq 2$ and some new relationships are obtained. In particular, some well known formulas such as duplication, addition are derived.

1 Introduction and Preliminaries

Given two MPS $\left\{P_{n}\right\}_{n \geq 0}$ and $\left\{Q_{n}\right\}_{n \geq 0}$ and a monic polynomial Φ, the so-called connection problem between them, i.e. the computation of coefficients $\lambda_{n, k}$ in the following expression

$$
\begin{equation*}
\Phi(x) Q_{n}(x)=\sum_{k=0}^{n+\operatorname{deg} \Phi} \lambda_{n, k} P_{k}(x) \text { for } n \geq 0 \tag{1}
\end{equation*}
$$

plays an important role in many problems in pure and applied mathematics (see for instance [6] for adequate references). The literature on this topic is extremely vast and a wide variety of methods, based on specific properties of the involved polynomials, have been developed using several techniques for $\Phi(x)=1[1,2,6,7,8,9]$. In the context of the connection problem (1), we are dealing in this contribution with a numerical method to compute the coefficient $\lambda_{n, k}$ step by step. Some illustrative examples from the classical continuous, discrete and q-discrete case (Hermite, Meixner and Little q-Laguerre) are highlighted for some monic polynomials Φ with $\operatorname{deg} \Phi \leq 2$. As consequence, some new connections are obtained and some well known formulas such as duplication, addition are recovered.

Let \mathcal{P} be the vector space of polynomials with coefficients in \mathbb{C} and let \mathcal{P}^{\prime} be its dual. We denote by $\langle u, f\rangle$ the effect of $u \in \mathcal{P}^{\prime}$ on $f \in \mathcal{P}$. In particular, we denote

[^0]by $(u)_{n}:=\left\langle u, x^{n}\right\rangle, n \geq 0$, the moments of the form u (linear functional). Let us introduce some useful operations in \mathcal{P}^{\prime}. For any form u, any polynomial g, and any $(A, B) \in \mathbb{C}-\{0\} \times \mathbb{C}$, let $g u, h_{A} u$, and $\tau_{B} u$ be the forms defined by duality
$$
\langle g u, f\rangle:=\langle u, g f\rangle, \quad\left\langle h_{A} u, f\right\rangle:=\left\langle u, h_{A} f\right\rangle, \quad\left\langle\tau_{B} u, f\right\rangle=\left\langle u, \tau_{-B} f\right\rangle,
$$
for all $f \in \mathcal{P}$ where $\left(h_{A} f\right)(x)=f(A x)$ and $\left(\tau_{-B} f\right)(x):=f(x+B)[3,5]$.
Let $\left\{P_{n}\right\}_{n \geq 0}$ be a sequence of monic polynomials with $\operatorname{deg} P_{n}=n, n \geq 0$ (MPS) and let $\left\{u_{n}\right\}_{n \geq 0}$ be its dual sequence, $u_{n} \in \mathcal{P}^{\prime}$ defined by $\left\langle u_{n}, P_{m}\right\rangle:=\delta_{n, m}, n, m \geq 0$. The sequence $\left\{P_{n}\right\}_{n \geq 0}$ is called orthogonal (MOPS) if we can associate with it a form u (with $\left.(u)_{0}=1\right)$ and a sequence of numbers $\left\{r_{n}\right\}_{n \geq 0}\left(r_{n} \neq 0, n \geq 0\right)$ such that $[3,5]$
$$
\left\langle u, P_{m} P_{n}\right\rangle=r_{n} \delta_{n, m} \text { for } n, m \geq 0 \text {. }
$$

The form u is then said to be regular. The MOPS $\left\{P_{n}\right\}_{n \geq 0}$ fulfils the three-term recurrence relation $[3,5]$

$$
\left\{\begin{array}{l}
P_{0}(x)=1, P_{1}(x)=x-\xi_{0} \tag{2}\\
P_{n+2}(x)=\left(x-\xi_{n+1}\right) P_{n+1}(x)-\alpha_{n+1} P_{n}(x) \text { for } n \geq 0
\end{array}\right.
$$

where

$$
\xi_{n}=\frac{\left\langle u, x P_{n}^{2}\right\rangle}{r_{n}} \text { and } \alpha_{n+1}=\frac{r_{n+1}}{r_{n}} \neq 0 \text { for } n \geq 0 .
$$

The regular form u is positive definite if and only if $\xi_{n} \in \mathbb{R}$ and $\alpha_{n+1}>0$ for $n \geq 0$. cf. [3, 5].

If we consider the shifted monic polynomials $\widetilde{P}_{n}(x)=A^{-n} P_{n}(A x+B)$ for $n \geq 0$, then $\left\{\widetilde{P}_{n}\right\}_{n \geq 0}$ is also a MOPS and its recurrence coefficients are $[3,5]$

$$
\begin{equation*}
\widetilde{\xi}_{n}=\frac{\xi_{n}-B}{A} \text { and } \widetilde{\alpha}_{n+1}=\frac{\alpha_{n+1}}{A^{2}} \text { for } n \geq 0 \tag{3}
\end{equation*}
$$

A form u is said to be symmetric if and only if $(u)_{2_{n+1}}=0$ for $n \geq 0$. A MPS $\left\{P_{n}\right\}_{n \geq 0}$ is symmetric if and only if $P_{n}(-x)=(-1)^{n} P_{n}(x)$ for $n \geq 0$. cf. [3,5]. Let $\left\{P_{n}\right\}_{n \geq 0}$ be a MOPS with respect to u, then

$$
u \text { is symmetric } \Longleftrightarrow\left\{P_{n}\right\}_{n \geq 0} \text { is symmetric } \Longleftrightarrow \xi_{n}=0 \text { for } n \geq 0 .
$$

cf. [3, 5].
In the sequel, let $\left\{P_{n}\right\}_{n \geq 0}$ be a MOPS with respect to u_{0} and satisfying (2) and $\left\{Q_{n}\right\}_{n \geq 0}$ be a MOPS fulfilling

$$
\left\{\begin{array}{l}
Q_{0}(x)=1, Q_{1}(x)=x-\beta_{0} \tag{4}\\
Q_{n+2}(x)=\left(x-\beta_{n+1}\right) Q_{n+1}(x)-\gamma_{n+1} Q_{n}(x) \text { for } n \geq 0
\end{array}\right.
$$

2 The Method

The scope of this section is to give recurrence relations in order to be able to calculate by induction the coefficients $\lambda_{n, k}$ between $\left\{P_{n}\right\}_{n \geq 0}$ and $\left\{Q_{n}\right\}_{n \geq 0}$ with respect to Φ $(t=\operatorname{deg} \Phi \geq 0)$ given by the expansion of ΦQ_{n} in terms of the P_{n} basis. We may write (1) in the following way

$$
\begin{equation*}
\Phi(x) Q_{n}(x)=\sum_{k \in \mathbb{Z}} \lambda_{n, k} P_{k}(x) \text { for } n \geq 0 \tag{5}
\end{equation*}
$$

By virtue of (5), (4) and (2), we get the following formula

$$
\begin{align*}
\lambda_{n, n+t-j}= & \lambda_{0, t-j}+\sum_{k=\nu_{j}}^{n-1}\left\{\left(\xi_{k+t+1-j}-\beta_{k}\right) \lambda_{k, k+t+1-j}+\alpha_{k+t+2-j} \lambda_{k, k+t+2-j}\right. \\
& \left.-\gamma_{k} \lambda_{k-1, k+t+1-j}\right\} \tag{6}
\end{align*}
$$

for $n \geq \max \left(1, \nu_{j}+1\right)$, where $\nu_{j}=\max (0, j-t-1), 0 \leq j \leq n+t$, and the initial conditions are reached in the following values $\left(\lambda_{0, k}\right)_{0 \leq k \leq t}$. Moreover,

$$
\begin{equation*}
\lambda_{n, k}=0 \text { for either } k \leq-1 \text { or } k \geq n+t+1, n \geq 0 \tag{7}
\end{equation*}
$$

We are going to detail the process (6)-(7). For $j=0$, we have

$$
\begin{equation*}
\lambda_{n, n+t}=1 \text { for } n \geq 0 \tag{8}
\end{equation*}
$$

For $j=1$, we have $\nu_{1}=0$. Taking (6)-(7) into account, we get

$$
\begin{equation*}
\lambda_{n, n+t-1}=\lambda_{0, t-1}+\sum_{k=0}^{n-1}\left(\xi_{k+t}-\beta_{k}\right) \text { for } n \geq 1 \tag{9}
\end{equation*}
$$

For $j=2$ in (6)-(7), two cases arise:
(i) If $t \geq 1$, then $\nu_{2}=0$. Therefore, for $n \geq 2$,

$$
\begin{equation*}
\lambda_{n, n+t-2}=\lambda_{0, t-2}+\sum_{k=0}^{n-1}\left(\xi_{k+t-1}-\beta_{k}\right) \lambda_{k, k+t-1}+\alpha_{t}+\sum_{k=1}^{n-1}\left(\alpha_{k+t}-\gamma_{k}\right) \tag{10}
\end{equation*}
$$

and, for $n=1$,

$$
\begin{equation*}
\lambda_{1, t-1}=\lambda_{0, t-2}+\left(\xi_{t-1}-\beta_{0}\right) \lambda_{0, t-1}+\alpha_{t} \tag{11}
\end{equation*}
$$

(ii) If $t=0$, then $\nu_{2}=1$. Therefore, for $n \geq 2$,

$$
\begin{equation*}
\lambda_{n, n-2}=\sum_{k=1}^{n-1}\left\{\left(\xi_{k-1}-\beta_{k}\right) \lambda_{k, k-1}+\left(\alpha_{k}-\gamma_{k}\right)\right\} . \tag{12}
\end{equation*}
$$

If we suppose that for an integer j satisfying $0 \leq j+1 \leq n+t$, all the coefficients $\lambda_{k, k+t-(j-1)}$ and $\lambda_{k, k+t-j}, 0 \leq k \leq n-1$ have been calculated, then using (6)-(7) with the change $j \leftarrow j+1$ yields

$$
\begin{align*}
\lambda_{n, n+t-(j+1)}= & \lambda_{0, t-j-1}+\sum_{k=\nu_{j+1}}^{n-1}\left\{\left(\xi_{k+t-j}-\beta_{k}\right) \lambda_{k, k+t-j}\right. \\
& \left.+\alpha_{k+t+1-j} \lambda_{k, k+t-(j-1)}-\gamma_{k} \lambda_{k-1, k-1+t-(j-1)}\right\} \tag{13}
\end{align*}
$$

Hence, it is possible to determine $\lambda_{n, n+t-(j+1)}$ for $n \geq \max \left(1, \nu_{j+1}+1\right)$.

REMARK 1. On account of (4), we obtain

$$
\begin{equation*}
(x+c) Q_{n}(x)=Q_{n+1}(x)+\left(c+\beta_{n}\right) Q_{n}(x)+\gamma_{n} Q_{n-1}(x) \text { for } n \geq 0, c \in \mathbb{C} . \tag{14}
\end{equation*}
$$

REMARK 2. When $\Phi(x)=x^{2}+c x+d, c, d \in \mathbb{C}$ and using the previous relation, the coefficients $\left\{\theta_{n, k}\right\}_{n, k \geq 0}$ between $\left\{Q_{n}\right\}_{n \geq 0}$ and $\left\{Q_{n}\right\}_{n \geq 0}$ by respect to Φ are given by

$$
\begin{cases}\theta_{n, n+2}=1, \theta_{n, n+1}=c+\beta_{n}+\beta_{n+1} & \text { for } n \geq 0 \tag{15}\\ \theta_{n, n}=d+c \beta_{n}+\beta_{n}^{2}+\gamma_{n}+\gamma_{n+1} & \text { for } n \geq 0 \\ \theta_{n, n-1}=\gamma_{n}\left(c+\beta_{n}+\beta_{n-1}\right), n \geq 1, \theta_{n, n-2}=\gamma_{n} \gamma_{n-1} & \text { for } n \geq 2 \\ \theta_{n, k}=0,0 \leq k \leq n-3 & \text { for } n \geq 3\end{cases}
$$

PROPOSITION 1. Let consider the following connection problems

$$
Q_{n}(x)=\sum_{k=0}^{n} \mu_{n, k} P_{k}(x) \text { and } \Phi(x) Q_{n}(x)=\sum_{k=0}^{n+t} \lambda_{n, k} P_{k}(x) \text { for } n \geq 0
$$

Then the following two statements hold.
(i) If $\Phi(x)=x+c$, then $\lambda_{n, k}=\mu_{n+1, k}+\left(\beta_{n}+c\right) \mu_{n, k}+\gamma_{n} \mu_{n-1, k}$ for $n, k \geq 0$.
(ii) If $\Phi(x)=x^{2}+c x+d$, then

$$
\lambda_{n, k}=\mu_{n+2, k}+\theta_{n, n+1} \mu_{n+1, k}+\theta_{n, n} \mu_{n, k}+\theta_{n, n-1} \mu_{n-1, k}+\theta_{n, n-2} \mu_{n-2, k}
$$

for $n, k \geq 0$ where $\theta_{n, k}$ is given in (15).

PROOF. (i)(respectively (ii)) is an immediate consequence of (14)(respectively (15)).

3 Applications

3.1 The Continuous Classical Hermite MOPS $\left\{H_{n}\right\}_{n \geq 0}$

Let $\left\{H_{n}\right\}_{n \geq 0}$ be the Hermite MOPS satisfying (2) with $\xi_{n}=0$ and $\alpha_{n+1}=\frac{1}{2}(n+1)$ for $n \geq 0$ [3]. Let consider the two shifted $\operatorname{MOPS}\left\{\widetilde{H}_{n}\right\}_{n \geq 0}$ and $\left\{\widehat{H}_{n}\right\}_{n \geq 0}$ defined by

$$
\widetilde{H}_{n}(x)=\left(\tau_{-y} H_{n}\right)(x)=H_{n}(x+y) \text { for } y \in \mathbb{C}
$$

and

$$
\widehat{H}_{n}(x)=a^{-n} H_{n}(a x) \text { for } a \in \mathbb{C} \backslash\{0\}
$$

Accordingly to (3), we obtain

$$
\begin{equation*}
\widetilde{\xi}_{n}=-y \text { and } \widetilde{\alpha}_{n+1}=\frac{1}{2}(n+1) \text { for } n \geq 0 \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{\xi}_{n}=0 \text { and } \widehat{\alpha}_{n+1}=\frac{1}{2 a^{2}}(n+1) \text { for } n \geq 0 \tag{17}
\end{equation*}
$$

3.1.1 The Connection Problem $\widehat{H}_{n}(x)=\sum_{k=0}^{n} \mu_{n, k} H_{k}(x)$

Choosing $Q_{n}(x)=\widehat{H}_{n}(x), P_{n}=H_{n}$ and $\Phi(x)=1(t=0)$ in (1), (6)-(7) and by virtue of (17), then (9) and (12) lead to

$$
\lambda_{n, n-1}=0 \text { for } n \geq 1 \text { and } \lambda_{n, n-2}=\frac{1}{2}\left(1-\frac{1}{a^{2}}\right)\binom{n}{n-2} \text { for } n \geq 2
$$

By induction and (13), we get $\lambda_{n, n-(2 j+1)}=0$. Suppose that

$$
\lambda_{k, k-2 j}=\frac{\prod_{\nu=1}^{j}(2 \nu-1)}{2^{j}}\left(1-\frac{1}{a^{2}}\right)^{j}\binom{k}{2 j} \text { for } 0<2 j \leq n-2 \text { and } 2 j \leq k \leq n
$$

On account of (13) an other time, we obtain

$$
\lambda_{n, n-(2 j+2)}=\sum_{k=2 j+1}^{n-1}\left\{\alpha_{k-2 j} \lambda_{k, k-2 j}-\gamma_{k} \lambda_{k-1, k-1-2 j}\right\}
$$

It's easy to verify that

$$
\alpha_{k-2 j} \lambda_{k, k-2 j}=\frac{\prod_{\nu=0}^{j}(2 \nu+1)}{2^{j+1}}\left(1-\frac{1}{a^{2}}\right)^{j}\binom{k}{2 j+1}
$$

and

$$
\gamma_{k} \lambda_{k-1, k-1-2 j}=\frac{\prod_{\nu=0}^{j}(2 \nu+1)}{2^{j+1}}\left(1-\frac{1}{a^{2}}\right)^{j}\left(\frac{1}{a^{2}}\right)\binom{k}{2 j+1}
$$

Then

$$
\begin{aligned}
\lambda_{n, n-(2 j+2)} & =\frac{\prod_{\nu=0}^{j}(2 \nu+1)}{2^{j+1}}\left(1-\frac{1}{a^{2}}\right)^{j+1} \sum_{k=2 j+1}^{n-1}\binom{k}{2 j+1} \\
& =\frac{\prod_{k=0}^{j}(2 k+1)}{2^{j+1}}\left(1-\frac{1}{a^{2}}\right)^{j+1}\binom{n}{2 j+2} .
\end{aligned}
$$

Lastly, we obtain

$$
\begin{cases}\lambda_{n, n-j}=0 & \text { for } j=2 k+1 \text { and } k \leq\left[\frac{n-1}{2}\right] \\ \lambda_{n, n-j}=\frac{\prod_{k=0}^{j}(2 k+1)}{2^{k}}\left(1-\frac{1}{a^{2}}\right)^{k}\binom{n}{2 k} & \text { for } j=2 k \text { and } 1 \leq k \leq\left[\frac{n}{2}\right] \\ \lambda_{n, n}=1 & \text { for } n \geq 0\end{cases}
$$

Hence,

$$
a^{-n} H_{n}(a x)=\sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{(2 k)!}{2^{2 k} k!}\left(1-\frac{1}{a^{2}}\right)^{k}\binom{n}{2 k} H_{n-2 k}(x) \text { for } n \geq 0
$$

Consequently, we recover again the so-called duplication formula for the Hermite polynomials [6].

3.1.2 The Connection Problem $\widetilde{H}_{n}(x)=\sum_{k=0}^{n} \mu_{n, k} H_{k}(x)$

On account of (9), (12) with (16), where $P_{n}=H_{n}, Q_{n}=\widetilde{H}_{n}$ and $t=0$, we get

$$
\mu_{n, n-1}=\binom{n}{n-1} y, n \geq 1 \text { and } \mu_{n, n-2}=\binom{n}{n-2} y^{2} \text { for } n \geq 2
$$

Suppose that

$$
\mu_{k, k-i}=\binom{k}{k-i} y^{i} \text { for } i \leq j \leq n-1 \text { and } j \leq k \leq n
$$

By virtue of (13), we obtain

$$
\mu_{n, n-(j+1)}=\sum_{k=j}^{n-1}\left\{y \mu_{k, k-j}+\alpha_{k+1-j} \mu_{k, k-(j-1)}-\alpha_{k} \mu_{k-1, k-1-(j-1)}\right\}
$$

But $\alpha_{k+1-j} \mu_{k, k-(j-1)}=\alpha_{k} \mu_{k-1, k-1-(j-1)}$. Hence,

$$
\mu_{n, n-(j+1)}=y^{j+1} \sum_{k=j}^{n-1}\binom{k}{j}=y^{j+1}\binom{n}{j+1}=y^{j+1}\binom{n}{n-(j+1)}
$$

Consequently, we recover again the well known addition formula [6]

$$
H_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} y^{n-k} H_{k}(x), n \geq 0
$$

3.1.3 The Connection Problem $\left(x^{2}+c x+d\right) \widetilde{H}_{n}(x)=\sum_{k=0}^{n+2} \lambda_{n, k} H_{k}(x), c, d \in \mathbb{C}$ Using the connection problem in 3.1.2 and applying Proposition 1., we get that, for $n \geq 0$ and $k \leq n$,

$$
\begin{gathered}
\lambda_{n, n+1}=c+n y, \lambda_{n, n+2}=1 \\
\lambda_{n, k}=\quad y^{n-2-k}\binom{n}{k}\left\{y^{4} \frac{(n+2)(n+1)}{(n+2-k)(n+1-k)}+(c-2 y) y^{3} \frac{n+1}{n+1-k}\right. \\
\left.+y^{2}\left(n+\frac{1}{2}+d+y^{2}-c y\right)+y \frac{(c-2 y)(n-k)}{2}+\frac{(n-k)(n-k-1)}{4}\right\} .
\end{gathered}
$$

3.2 The Discrete Classical Meixner MOPS $\left\{M_{n}^{(\alpha, a)}\right\}_{n \geq 0}$

Let us consider the Meixner MOPS $\left\{M_{n}^{(\alpha, a)}\right\}_{n \geq 0}$ of parameters α, a. It satisfies (2) with [3]

$$
\begin{equation*}
\xi_{n}=\frac{a \alpha+n(1+a)}{1-a} \text { for } n \geq 0 \text { and } \alpha_{n}=\frac{a n(\alpha+n-1)}{(1-a)^{2}} \text { for } n \geq 1 \tag{18}
\end{equation*}
$$

3.2.1 The Connection Problem $M_{n}^{(\beta, a)}(x)=\sum_{k=0}^{n} \mu_{n, k} M_{k}^{(\alpha, a)}(x)$

Choosing $P_{n}=M_{n}^{(\alpha, a)}$ and $Q_{n}=M_{n}^{(\beta, a)}$ in (1). On account of (18), (9) gives

$$
\mu_{n, n-1}=\sum_{k=0}^{n-1}\left(\xi_{k}-\beta_{k}\right)=n\left(\frac{a}{1-a}\right)(\alpha-\beta)=\frac{a}{1-a}\binom{n}{n-1}(\alpha-\beta)_{1}
$$

where

$$
(x)_{n}:=\prod_{k=0}^{n-1}(x+k)=\frac{\Gamma(x+n)}{\Gamma(x)} \text { for } n \geq 1
$$

being the well-known Pochhammer's symbol and Γ be the Gamma function [3]. Then

$$
\mu_{n, n-1}=\binom{n}{n-1}\left(\frac{a}{a-1}\right)^{n-(n-1)}(\beta-\alpha)_{n-(n-1)}
$$

Likewise, taking (12) into account and by virtue of (18), we have

$$
\begin{aligned}
\mu_{n, n-2} & =\sum_{k=1}^{n-1}\left(\xi_{k-1}-\beta_{k}\right) \lambda_{k, k-1}+\sum_{k=1}^{n-1}\left(\alpha_{k}-\gamma_{k}\right) \\
& =\sum_{k=1}^{n-1}\left\{\frac{a(\alpha-\beta)-(1+a)}{1-a} \frac{a}{1-a}(\alpha-\beta) k\right\}+\sum_{k=1}^{n-1} \frac{a k(\alpha-\beta)}{(1-a)^{2}} \\
& =\left(\frac{a}{1-a}\right)^{2}(\alpha-\beta)(\alpha-\beta-1) \frac{(n-1) n}{2} \\
& =\binom{n}{n-2}\left(\frac{a}{a-1}\right)^{n-(n-2)}(\beta-\alpha)_{n-(n-2) .}
\end{aligned}
$$

Suppose that

$$
\mu_{k, k-i}=\binom{n}{i}\left(\frac{a}{a-1}\right)^{i}(\beta-\alpha)_{i} \text { for } i \leq j \text { and } k \leq n .
$$

Using (13) and by virtue of (18) an other time, we obtain

$$
\begin{aligned}
& \mu_{n, n-(j+1)} \\
= & \sum_{k=j}^{n-1}\left\{\left(\xi_{k-j}-\beta_{k}\right) \mu_{k, k-j}+\alpha_{k+1-j} \mu_{k, k-(j-1)}-\gamma_{k} \mu_{k-1, k-1-(j-1)}\right\} \\
= & \frac{a^{j}}{(a-1)^{j+1}}(\beta-\alpha)_{j}\left\{[a(\beta-\alpha+j)+j] \sum_{k=j}^{n-1}\binom{k}{j}-\sum_{k=j}^{n-1}(k-j+1)\binom{k}{j-1}\right\} \\
= & \left(\frac{a}{a-1}\right)^{j+1}(\beta-\alpha)_{j+1} \sum_{k=j}^{n-1}\binom{k}{j} \\
= & \binom{n}{j+1}\left(\frac{a}{a-1}\right)^{j+1}(\beta-\alpha)_{j+1} .
\end{aligned}
$$

Hence,

$$
\mu_{n, n-j}=\binom{n}{j}\left(\frac{a}{a-1}\right)^{j}(\beta-\alpha)_{j} \text { for } 0 \leq j \leq n \text { and } n \geq 1
$$

3.2.2 The Connection Problem $(x+c) M_{n}^{(\beta, a)}(x)=\sum_{k=0}^{n} \lambda_{n, k} M_{k}^{(\alpha, a)}(x), c \in \mathbb{C}$

Taking into account Proposition 1. and the connection problem 3.2.1, the coefficients between $\left\{M_{n}^{(\alpha, a)}\right\}_{n \geq 0}$ and $\left\{M_{n}^{(\alpha, b)}\right\}_{n \geq 0}$ by respect to $\Phi(x)=x+c$ are given by $\lambda_{n, n+1}=$ 1 and

$$
\begin{aligned}
\lambda_{n, k}= & \binom{n}{k}\left(\frac{a}{a-1}\right)^{n+1-k}(\beta-\alpha)_{n-k} \times\left\{\frac{(n+1)(\beta-\alpha+n-k)}{n+1-k}\right. \\
& \left.-\frac{(1-a) c+a \beta+n(1+a)}{a}+\frac{(\beta+n-1)(n-k)}{a(\beta-\alpha+n-k-1)}\right\}
\end{aligned}
$$

for $n \geq 0$ and $0 \leq k \leq n$.

3.3 The Quantum Classical Little q-Laguerre MOPS $\left\{L_{n}(. ; a \mid q)\right\}_{n \geq 0}$

Let us consider the Little q-Laguerre $\operatorname{MOPS}\left\{L_{n}(. ; a \mid q)\right\}_{n \geq 0}$ of parameters $a \neq 0$. It satisfies (2) with [4]

$$
\begin{cases}\xi_{n}=\left\{1+a-a(1+q) q^{n}\right\} q^{n} & \text { for } n \geq 0 \tag{19}\\ \alpha_{n}=a\left(1-q^{n}\right)\left(1-a q^{n}\right) q^{2 n-1} & \text { for } n \geq 1\end{cases}
$$

On account of (3), its shifted MOPS $\left\{q^{-n} h_{q} L_{n}(. ; a \mid q)\right\}_{n \geq 0}$ satisfies (4) with

$$
\begin{cases}\beta_{n}=\left\{1+a-a(1+q) q^{n}\right\} q^{n-1} & \text { for } n \geq 0 \tag{20}\\ \gamma_{n}=a\left(1-q^{n}\right)\left(1-a q^{n}\right) q^{2 n-3} & \text { for } n \geq 1\end{cases}
$$

3.3.1 The Connection Problem $q^{-n} L_{n}(q x ; a \mid q)=\sum_{k=0}^{n} \mu_{n, k} L_{k}(x ; a \mid q)$

Choosing $P_{n}(x)=L_{n}(x ; a \mid q)$ and $Q_{n}(x)=q^{-n} L_{n}(q x ; a \mid q)$ in (1). On account of (19)(20), (9) gives

$$
\mu_{n, n-1}=-q^{-1}\left(1-q^{n}\right)\left(1-a q^{n}\right) \text { for } n \geq 1
$$

Moreover, after some calculations taking into account (19)-(20) and (12)-(13) we get

$$
\mu_{n, n-2}=0 \text { for } n \geq 2 \text { and } \mu_{n, n-3}=0 \text { for } n \geq 3
$$

Consequently, formula (13) an other time yields $\mu_{n, n-k}=0$ for $0 \leq k \leq n-2$. Therefore,

$$
\begin{equation*}
q^{-n} L_{n}(q x ; a \mid q)=L_{n}(x ; a \mid q)-q^{-1}\left(1-q^{n}\right)\left(1-a q^{n}\right) L_{n-1}(x ; a \mid q) \text { for } n \geq 0 \tag{21}
\end{equation*}
$$

with $L_{-1}(x ; a \mid q):=0$.
3.3.2 The Connection Problem $(x+c) q^{-n} L_{n}(q x ; a \mid q)=\sum_{k=0}^{n+1} \lambda_{n, k} L_{k}(x ; a \mid q), c \in$ \mathbb{C}

Taking into account Proposition 1. and the relationship (21) in the connection problem 3.3.1, the coefficients between $\left\{q^{-n} h_{q} L_{n}(. ; a \mid q)\right\}_{n \geq 0}$ and $\left\{L_{n}(. ; a \mid q)\right\}_{n \geq 0}$ by respect to $\Phi(x)=x+c, c \in \mathbb{C}$ and

$$
(x+c) q^{-n} L_{n}(q x ; a \mid q)=\sum_{k=n-2}^{n+1} \lambda_{n, k} L_{k}(x ; a \mid q)
$$

are given by

$$
\begin{gathered}
\lambda_{n, n+1}=1, \lambda_{n, n}=c-q^{-1}+\left\{(1+a)(1+q)-a q^{n}\left(1+q+q^{2}\right)\right\} q^{n-1} \\
\lambda_{n, n-1}=-q^{-1}\left(1-q^{n}\right)\left(1-a q^{n}\right)\left\{c+q^{n-1}-a q^{n-1}\left(1-q^{n-1}\left(1+q+q^{2}\right)\right)\right\},
\end{gathered}
$$

and

$$
\lambda_{n, n-2}=-a\left(1-q^{n-1}\right)\left(1-q^{n}\right)\left(1-a q^{n-1}\right)\left(1-a q^{n}\right) q^{2 n-4}
$$

References

[1] Y. Ben Cheikh and H. Chaggara, Connection coefficients via lowering operators, J. Comput. Appl. Math., 178(2005), 45-61.
[2] H. Chaggara and W. Koepf, Duplication coefficients via generating functions, Complex Var. Elliptic Equ., 52(2007), 537-549.
[3] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New york, 1978.
[4] A. Ghressi and L. Khériji, Orthogonal q-polynomials related to perturbed form, Appl. Math. E-Notes, 7(2007), 111-120.
[5] A. Ghressi and L. Khériji, A Survey On D-Semiclassical Orthogonal Polynomials, Appl. Math. E-Notes, 10(2010), 210-234.
[6] E. Godoy, A. Ronveaux, A. Zarzo, I. Area, Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: Continuous case, J. Comput. Appl. Math., 84(1997), 257-275.
[7] E. Godoy, A. Ronveaux, A. Zarzo, I. Area, Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: Discrete case, J. Comput. Appl. Math., 89(1998), 309-325.
[8] P. Maroni and Z. da Rocha, Connection coefficients between orthogonal polynomials and the canonical sequence: an approach based on symbolic computation, Numer. Algor., 47(2008), 291-314.
[9] P. Maroni and Z. da Rocha, Connection coefficients for orthogonal polynomials: symbolic computations, verifications and demonstrations in the Mathematica language, Numer. Algor., 63(2013), 507-520.

[^0]: *Mathematics Subject Classifications: 33C45, 42C05.
 ${ }^{\dagger}$ Faculté des Sciences de Monastir, Département de Mathématiques, 5019, Monastir, Tunisia.

