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Abstract
In this paper, we solve the following connection problem

n-+deg &

O(z)Qn(x) = Z A,k Pr(z) for n >0,
k=0

where {Pp}n>0 and {Qn}n>0 are two MOPS and @ is a monic polynomial. We
establish a method for computing the coefficient A, » step by step. As application,
we apply this process for some continuous, discrete and quantum classical MOPS
with the choice deg ® < 2 and some new relationships are obtained. In particular,
some well known formulas such as duplication, addition are derived.

1 Introduction and Preliminaries

Given two MPS {P,},>0 and {@, }»>0 and a monic polynomial ®, the so-called con-
nection problem between them, i.e. the computation of coefficients A, j in the following

expression
n+deg ®

O(z)Qn(z) = Z Ak Pr(x) for n > 0. (1)
k=0

plays an important role in many problems in pure and applied mathematics (see for
instance [6] for adequate references). The literature on this topic is extremely vast
and a wide variety of methods, based on specific properties of the involved polynomi-
als, have been developed using several techniques for ®(z) = 1 [1, 2, 6, 7, 8, 9]. In
the context of the connection problem (1), we are dealing in this contribution with
a numerical method to compute the coeflicient A, step by step. Some illustrative
examples from the classical continuous, discrete and g-discrete case (Hermite, Meixner
and Little g-Laguerre) are highlighted for some monic polynomials ® with deg® < 2.
As consequence, some new connections are obtained and some well known formulas
such as duplication, addition are recovered.

Let P be the vector space of polynomials with coefficients in C and let P’ be its
dual. We denote by (u, f) the effect of w € P’ on f € P. In particular, we denote
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64 Connection Problem Between Polynomial Sequences

by (u), := (u,z2™), n > 0, the moments of the form u (linear functional). Let us
introduce some useful operations in P’. For any form u, any polynomial g, and any
(A,B) € C—{0} x C, let gu, hau, and Tpu be the forms defined by duality

<gu7 f> = <u,gf>, <h’Au7 f> = <’U,, hAf>7 <TBU" f> = <U7T—Bf>7

for all f € P where (haf)(x) = f(Ax) and (7_pf)(z) := f(x + B) [3, 5].

Let {P,}n>0 be a sequence of monic polynomials with deg P,, = n, n > 0 (MPS)
and let {uy, }n>0 be its dual sequence, u,, € P’ defined by (un, P) := dpm,n,m > 0.
The sequence {P, },>¢ is called orthogonal (MOPS) if we can associate with it a form
u (with (u)p = 1) and a sequence of numbers {r, }n>0 (7, # 0, n > 0) such that [3, 5]

(U, P Py) = 10y, m for n,m > 0.

The form u is then said to be regular. The MOPS {P,},>¢ fulfils the three-term
recurrence relation [3, 5]

{ Py(z) =1, Pi(z) =z — &, (2)

Prya(z) = (2 = §41) Py (2) — a1 Po(2) for n > 0,

where

P2
7@’3? ) and apq1 = Intl

T'I’L n

£, = # 0 for n > 0.

The regular form w is positive definite if and only if ¢,, € Rand a1 > 0 for n > 0. cf.
3, 5].

If we consider the shifted monic polynomials P, (z) = A~"P,(Az + B) for n > 0,
then {ﬁn}nzo is also a MOPS and its recurrence coefficients are [3, 5]

e _€7L_B
gn_ A

and a,41 = % for n > 0. (3)

A form w is said to be symmetric if and only if (u)2,4+1 = 0 for n > 0. A MPS {P, },,>0
is symmetric if and only if P,(—xz) = (—1)"P,(z) for n > 0. cf. [3, 5]. Let {P, },>0 be
a MOPS with respect to u, then

u is symmetric <= {P, },,>0 is symmetric <= £, = 0 for n > 0.

cf. [3, 5.
In the sequel, let {P,},>0 be a MOPS with respect to uy and satisfying (2) and
{Qn}n>0 be a MOPS fulfilling

{ Qo(z) =1, Qi(z) = = — By, @

Qni2(r) = (= B11)Qn+1(x) — 71 1Qn(x) for n > 0.
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2 The Method

The scope of this section is to give recurrence relations in order to be able to calculate
by induction the coefficients A, , between {P,},>0 and {Q,}n>0 with respect to ®
(t = deg ® > 0) given by the expansion of ®Q),, in terms of the P,, basis. We may write
(1) in the following way

O(2)Qn(x) = Y AnsPr(x) for n > 0. (5)
keZ

By virtue of (5), (4) and (2), we get the following formula

n—1
Annti—j = Aoi—j+ E {(fk+t+1j — Br) Mo kt41—j + Qhtt2—j Nk k-t 42—
k?:l/j
’Yk/\k—l,k+t+1—j} (6)

for n > max(1,v; + 1), where v; = max(0,j —t —1), 0 < j < n+t, and the initial
conditions are reached in the following values (Ao x)o<k<¢. Moreover,

An,k = 0 for either k< —lork>n+t¢t+1, n>0. (7)
We are going to detail the process (6)—(7). For j = 0, we have
Anntt = 1 for n > 0. (8)

For j = 1, we have v; = 0. Taking (6)—(7) into account, we get

n—1

Aonti1=Xou-1+ Y (Epry — By) forn > 1. (9)
k=0

For j =2 in (6)-(7), two cases arise:

(i) If ¢t > 1, then vo = 0. Therefore, for n > 2,

n—1 n—1
Mnntia =Xop—2+ D (Eorer = B)Mekriot o+ Y (anpe—7;)  (10)
k=0 k=1
and, for n = 1,
Ati—1 = o2 + (§-1 — Bo)Aoe—1 + . (11)

(ii) If ¢ = 0, then vo = 1. Therefore, for n > 2,

n—1

M-z = D {(€mr = B 1 + (@ = 1) |- (12)

k=1
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If we suppose that for an integer j satisfying 0 < j+1 < n+t, all the coefficients
Aktt—(j—1) and Ag k¢—j,0 < k < n—1 have been calculated, then using (6)-(7)
with the change j < 7 + 1 yields

Anndt—(i+1) = Aop—j—1 T Z {§k+t 5= Bi) Mk krt—j

k=v;i1

Ot 41— Ak kb t— (—1) — ’Yk)\k—l,k—1+t—(j—1)}~ (13)

Hence, it is possible to determine A, ,,4¢—(j41) for n > max(1, ;41 + 1).

REMARK 1. On account of (4), we obtain
(@ +0)Qn(z) = @ny1(z) + (¢ + B,)Qn(2) +7,Qn-1(z) for n >0, ce C.  (14)
REMARK 2. When ®(z) = 2% + cx + d, ¢,d € C and using the previous relation,

the coefficients {0y, k }n k>0 between {Qp }n>0 and {@Qy}n>0 by respect to ® are given
by

Onni2=1, Opny1t=c+ B, + 8,11 for n >0,
Onn=d+cB, + B2+, + Vst for n >0, (15)
Onn—1="(c+ B, +Bp_1)s n>1, Opn_o="Vn_1 forn>2
0nr=0 0<k<n-3 for n > 3.

PROPOSITION 1. Let consider the following connection problems

n n—+t
x) = Z“n,kpk( ) and ®(x Z A,k Pi(z) for n > 0.
Then the following two statements hold.
(1) If (b(.Z‘) =T+ & then )\n,k = iun-‘rl,k: + (ﬁn + C)lun,k + rYnMn—l,k for n, k Z 0.
(i) If ®(x) = 2% + cx + d, then
Ak = Hpio gk T Onniifin i1k T Onnty g + Onn—1ty 15 + Onn—2pty,_ok

for n, k > 0 where 0, ;; is given in (15).

PROOF. (i)(respectively (ii)) is an immediate consequence of (14)(respectively

(15)).
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3 Applications

3.1 The Continuous Classical Hermite MOPS {H, },>¢

Let {H,}n>0 be the Hermite MOPS satisfying (2) with &, =0 and a,41 = 3(n + 1)
for n > 0 [3]. Let consider the two shifted MOPS {H,,},>0 and {ﬁn}nZO defined by

H,(z) = (1_yHy)(x) = Hy(x +y) fory € C

and

~

H,(x) =a "Hy(ax) for a € C\ {0}.
Accordingly to (3), we obtain

_ 1
£, =—yand ap1 = §(n +1) forn >0, (16)

and

-~ 1
&, =0and Qpy1 = 2—2(n +1) forn > 0. (17)
a

3.1.1 The Connection Problem H,(z) = Y}_, f 1 Hie ()
Choosing Q,,(z) = H,(z), P, = H, and ®(z) = 1 (t = 0) in (1), (6)-(7) and by virtue
of (17), then (9) and (12) lead to

1 1 n
Ann—1 =0forn >1and A\, 2 = 3 <1 — (12) (n_2) forn > 2.

By induction and (13), we get Ann—(2j+1) = 0. Suppose that

I (v —1) 1\’ & , ,
)\k,k2j:_12j<1_112> (2].)f0r0<2]§n—2and2]§k§n.

On account of (13) an other time, we obtain

n—1

Ann—(2j+2) = E {ak—2j Ak k—2j = VeAe—1,k-1-2;}
k=2j+1

It’s easy to verify that

j J
P _,v+1) 1Y | &
Qk—2j Nk k—2j = RN YNS 1 - 2 (2j+1)

and

J J
_ L—o(2v +1) 1 1 k
ey = =25 (12 5 ) (55) ).
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Then

Ann—(2j+2)

Lastly, we obtain

Connection Problem Between Polynomial Sequences

beo@vA ) (VTS
2j+1 a2 Z (2j+1)
k=2j+1
7 o2k+1) L1 AR
2j+1 T a2 (2j+2)'

Ann—j =0 for j=2k+1and k < ["T_l]7
Ann—j = w (1 a%)k (272) for j =2k and 1 <k < [§],
)\n,n =1 for n > 0.
Hence,
a "Hp(azx) = 52k ] (1 — aQ) (zk)Hn_gk(l‘) for n > 0.
k=0

Consequently, we recover again the so-called duplication formula for the Hermite poly-

nomials [6].

3.1.2 The Connection Problem H,,(z)

On account of (9), (12
:U/n,n—l = (nil

Suppose that

By virtue of (13), we obtain

K k—i

n—1

) with (16),

>y7 n Z 1 and /’(‘n,n—Q =

= > k0 Pk Hi (@)
where P, = H,, Q, = H, and t = 0, we get

(n7i2

)y2 forn > 2.

Z)yiforigjgn—landjgkgn.

Ponn—(+1) = Z{Wk,k—j Q1 (1)~ Ok ko1 (1) )
k=j

But agy1—jpig k- (j—1) = Webg—1,5-1-(j—1)- Hence,

J+1
:U“n,n (Gj+1) — Z

n
J+1

n—(j+1)

J+1

)

j+1(

).

=Y

Consequently, we recover again the well known addition formula [6]

n

n(z+y) :Z

k=0

n ka ),TLZO
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3.1.3 The Connection Problem (22 + cz + d)H,(z) = Zig A Hi(x), ¢,d e C

Using the connection problem in 3.1.2 and applying Proposition 1., we get that, for
n >0 and k < n,

)\n,n+l =c+ ny, )\n7n+2 = 1a

e et
+yg(n+%+d+y2—cy)+y(c_2y)2(n_k) + (n_k)(z_k_l)}.

3.2 The Discrete Classical Meixner MOPS {M,Sa’“)}nzo

Let us consider the Meixner MOPS {M,(La’a)}nzo of parameters «,a. It satisfies (2)
with [3]

ac +n(l+a) forn > 0 and a, an(a+n—1)

&n = l1—a - (1—a)?

for n > 1. (18)

3.2.1 The Connection Problem Méﬂ’"’)(x) => o pn’lega’a)(:c)

Choosing P, = M and @, = M in (1). On account of (18), (9) gives

n—1

/Ln,n—l = Z(&k - ﬁk) =n (1 i a) (a - 6) = %(nil)(a - 6)17
k=0
where )
(T)p := H(x+k) = W forn > 1,
k=0

being the well-known Pochhammer’s symbol and I' be the Gamma function [3]. Then

N a n—(n—1)
Iu”n,nfl = (n—l) <CL—1> (ﬁ - a)n—(n—l)'

Likewise, taking (12) into account and by virtue of (18), we have

n—1 n—1
Hpn—o = (Eh—1 = Br)Mep—1 + Z(ak - V&)
k=1 k=1
faa-p)-(1+a) a « ak(a - B)
B k_l{ l-a 1_a(aﬁ)k}+k_1 (1—-a)?
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Suppose that

n a ‘ . .
[ i = (l) (a1> (8 —a); fori<jandk <n.

Using (13) and by virtue of (18) an other time, we obtain

:u’n,n—(j+1)
n—1
= Z{(fkj = Bi) Bk k—j F Qo 1—j gy jo—(j—1) — ’Yk/j'kl,kl(jl)}
k=j
aj n—1 n—1

- m(ﬁ—a)j [a(ﬂ—a+j)+j]2(f)—Z(k—j+1)(jfl)
k=j k=j
a J+1 nfl]€
- (a—l) (6~ )51 3.(;)
k=i

= (i) < a1>j+1 (B = a)j+1-

a

Hence,

J
n a .
/Ln,n—j_(j)<a_1> (B—a)jfor 0 <j<mnandn>1.

3.2.2 The Connection Problem (z + c)M,SB’a)(x) => o )\mlega,a) (x), ceC

Taking into account Proposition 1. and the connection problem 3.2.1, the coefficients

between {M}La’a)}nzo and {My(Lmb)}nZO by respect to ®(x) = z+c are given by A, 41 =
1 and

Ak = (}) ( >n+1_k (B — )n_p X {(”+1)(ﬂ—a+n—k)

a—1 n+1—k
_(1—a)c+aﬁ+n(1+a)+ B+n—1(n—k) }
a af—a+n—k-—1)

forn>0and 0 <k <n.

3.3 The Quantum Classical Little ¢-Laguerre MOPS { L, (.; a|q) }n>0

Let us consider the Little g-Laguerre MOPS {L,,(.;alq) }n>0 of parameters a # 0. It
satisfies (2) with [4]

(19)

¢, ={l+a—a(l+4+q)q"}¢" forn >0,
a, =a(l —¢")(1 —ag™)g*>"~ ! forn > 1.
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On account of (3), its shifted MOPS {q~"hyL.(.; alq)}n>o satisfies (4) with

{ B, ={l+a—a(l+q)q"}¢" ! forn >0, (20)

Yo = a(l —g)(1 —ag™)g*3  forn > 1.
3.3.1 The Connection Problem ¢ "L, (qz;alq) = Y7o ft, 1Lk (x; alq)

Choosing P, () = Ly (z;alq) and Q,(z) = ¢ "Ly (qz;alg) in (1). On account of (19)-
(20), (9) gives
fpno1 =—q (1 —q¢")(1 —ag") for n > 1.

Moreover, after some calculations taking into account (19)-(20) and (12)-(13) we get
Pz =0 for n > 2 and p,, ,,_5 =0 for n > 3.
Consequently, formula (13) an other time yields p,, ,,_; = 0 for 0 < k < n—2. Therefore,
¢ "Ln(qusalg) = La(z;alg) — ¢~ (1 = ¢")(1 = ag") Lu-1(z;alq) forn >0 (21)
with L_;(x;alq) := 0.

3.3.2 The Connection Problem (z+c¢)q "L, (qx;alq) = ZZI& Ak Li(z5alq), ¢ €
C

Taking into account Proposition 1. and the relationship (21) in the connection problem
3.3.1, the coefficients between {¢~"hqL,(.; alq) }n>0 and {L,(.;alg)}n>0 by respect to
O(z)=z+¢ ceC and

n+1
(¢ +0)g "Lug;alg) = Y AxLi(zialg)

k=n—2
are given by
Mpt1 =1, M =c—q7 +{(1+a)(1 +q) —ag"(1+q+¢*)}g" ",
A1 =—q " 1=¢" )1 =ag"){c+q¢" " —ag" " (1-¢" " 1+q+q%)},
and
)\n,n72 = _a(l - qn_l)(l — qn)(l — aq”_l)(l _ aqn)an—éL.
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