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Abstract

In this paper, we solve the following connection problem

Φ(x)Qn(x) =

n+deg Φ∑
k=0

λn,kPk(x) for n ≥ 0,

where {Pn}n≥0 and {Qn}n≥0 are two MOPS and Φ is a monic polynomial. We
establish a method for computing the coeffi cient λn,k step by step. As application,
we apply this process for some continuous, discrete and quantum classical MOPS
with the choice deg Φ ≤ 2 and some new relationships are obtained. In particular,
some well known formulas such as duplication, addition are derived.

1 Introduction and Preliminaries

Given two MPS {Pn}n≥0 and {Qn}n≥0 and a monic polynomial Φ, the so-called con-
nection problem between them, i.e. the computation of coeffi cients λn,k in the following
expression

Φ(x)Qn(x) =

n+deg Φ∑
k=0

λn,kPk(x) for n ≥ 0. (1)

plays an important role in many problems in pure and applied mathematics (see for
instance [6] for adequate references). The literature on this topic is extremely vast
and a wide variety of methods, based on specific properties of the involved polynomi-
als, have been developed using several techniques for Φ(x) = 1 [1, 2, 6, 7, 8, 9]. In
the context of the connection problem (1), we are dealing in this contribution with
a numerical method to compute the coeffi cient λn,k step by step. Some illustrative
examples from the classical continuous, discrete and q-discrete case (Hermite, Meixner
and Little q-Laguerre) are highlighted for some monic polynomials Φ with deg Φ ≤ 2.
As consequence, some new connections are obtained and some well known formulas
such as duplication, addition are recovered.
Let P be the vector space of polynomials with coeffi cients in C and let P ′ be its

dual. We denote by 〈u, f〉 the effect of u ∈ P ′ on f ∈ P. In particular, we denote
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64 Connection Problem Between Polynomial Sequences

by (u)n := 〈u, xn〉 , n ≥ 0, the moments of the form u (linear functional). Let us
introduce some useful operations in P ′. For any form u, any polynomial g, and any
(A,B) ∈ C− {0} × C, let gu, hAu, and τBu be the forms defined by duality

〈gu, f〉 := 〈u, gf〉, 〈hAu, f〉 := 〈u, hAf〉, 〈τBu, f〉 = 〈u, τ−Bf〉,

for all f ∈ P where (hAf)(x) = f(Ax) and (τ−Bf)(x) := f(x+B) [3, 5].
Let {Pn}n≥0 be a sequence of monic polynomials with degPn = n, n ≥ 0 (MPS)

and let {un}n≥0 be its dual sequence, un ∈ P ′ defined by 〈un, Pm〉 := δn,m, n,m ≥ 0.
The sequence {Pn}n≥0 is called orthogonal (MOPS) if we can associate with it a form
u (with (u)0 = 1) and a sequence of numbers {rn}n≥0 (rn 6= 0, n ≥ 0) such that [3, 5]

〈u, PmPn〉 = rnδn,m for n,m ≥ 0.

The form u is then said to be regular. The MOPS {Pn}n≥0 fulfils the three-term
recurrence relation [3, 5]{

P0(x) = 1, P1(x) = x− ξ0,

Pn+2(x) = (x− ξn+1)Pn+1(x)− αn+1Pn(x) for n ≥ 0,
(2)

where

ξn =
〈u, xP 2

n〉
rn

and αn+1 =
rn+1

rn
6= 0 for n ≥ 0.

The regular form u is positive definite if and only if ξn ∈ R andαn+1 > 0 for n ≥ 0. cf.
[3, 5].

If we consider the shifted monic polynomials P̃n(x) = A−nPn(Ax + B) for n ≥ 0,
then {P̃n}n≥0 is also a MOPS and its recurrence coeffi cients are [3, 5]

ξ̃n =
ξn −B
A

and α̃n+1 =
αn+1

A2
for n ≥ 0. (3)

A form u is said to be symmetric if and only if (u)2n+1 = 0 for n ≥ 0. A MPS {Pn}n≥0

is symmetric if and only if Pn(−x) = (−1)nPn(x) for n ≥ 0. cf. [3, 5]. Let {Pn}n≥0 be
a MOPS with respect to u, then

u is symmetric⇐⇒ {Pn}n≥0 is symmetric⇐⇒ ξn = 0 for n ≥ 0.

cf. [3, 5].
In the sequel, let {Pn}n≥0 be a MOPS with respect to u0 and satisfying (2) and

{Qn}n≥0 be a MOPS fulfilling{
Q0(x) = 1, Q1(x) = x− β0,

Qn+2(x) = (x− βn+1)Qn+1(x)− γn+1Qn(x) for n ≥ 0.
(4)
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2 The Method

The scope of this section is to give recurrence relations in order to be able to calculate
by induction the coeffi cients λn,k between {Pn}n≥0 and {Qn}n≥0 with respect to Φ
(t = deg Φ ≥ 0) given by the expansion of ΦQn in terms of the Pn basis. We may write
(1) in the following way

Φ(x)Qn(x) =
∑
k∈Z

λn,kPk(x) for n ≥ 0. (5)

By virtue of (5), (4) and (2), we get the following formula

λn,n+t−j = λ0,t−j +

n−1∑
k=νj

{
(ξk+t+1−j − βk)λk,k+t+1−j + αk+t+2−jλk,k+t+2−j

−γkλk−1,k+t+1−j

}
(6)

for n ≥ max(1, νj + 1), where νj = max(0, j − t − 1), 0 ≤ j ≤ n + t, and the initial
conditions are reached in the following values (λ0,k)0≤k≤t. Moreover,

λn,k = 0 for either k ≤ −1 or k ≥ n+ t+ 1, n ≥ 0. (7)

We are going to detail the process (6)—(7). For j = 0, we have

λn,n+t = 1 for n ≥ 0. (8)

For j = 1, we have ν1 = 0. Taking (6)—(7) into account, we get

λn,n+t−1 = λ0,t−1 +

n−1∑
k=0

(ξk+t − βk) for n ≥ 1. (9)

For j = 2 in (6)-(7), two cases arise:

(i) If t ≥ 1, then ν2 = 0. Therefore, for n ≥ 2,

λn,n+t−2 = λ0,t−2 +

n−1∑
k=0

(ξk+t−1 − βk)λk,k+t−1 + αt +

n−1∑
k=1

(αk+t − γk) (10)

and, for n = 1,

λ1,t−1 = λ0,t−2 + (ξt−1 − β0)λ0,t−1 + αt. (11)

(ii) If t = 0, then ν2 = 1. Therefore, for n ≥ 2,

λn,n−2 =

n−1∑
k=1

{
(ξk−1 − βk)λk,k−1 + (αk − γk)

}
. (12)
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If we suppose that for an integer j satisfying 0 ≤ j+ 1 ≤ n+ t, all the coeffi cients
λk,k+t−(j−1) and λk,k+t−j , 0 ≤ k ≤ n−1 have been calculated, then using (6)-(7)
with the change j ← j + 1 yields

λn,n+t−(j+1) = λ0,t−j−1 +

n−1∑
k=νj+1

{
(ξk+t−j − βk)λk,k+t−j

+αk+t+1−jλk,k+t−(j−1) − γkλk−1,k−1+t−(j−1)

}
. (13)

Hence, it is possible to determine λn,n+t−(j+1) for n ≥ max(1, νj+1 + 1).

REMARK 1. On account of (4), we obtain

(x+ c)Qn(x) = Qn+1(x) + (c+ βn)Qn(x) + γnQn−1(x) for n ≥ 0, c ∈ C. (14)

REMARK 2. When Φ(x) = x2 + cx + d, c, d ∈ C and using the previous relation,
the coeffi cients {θn,k}n,k≥0 between {Qn}n≥0 and {Qn}n≥0 by respect to Φ are given
by 

θn,n+2 = 1 , θn,n+1 = c+ βn + βn+1 for n ≥ 0,

θn,n = d+ cβn + β2
n + γn + γn+1 for n ≥ 0,

θn,n−1 = γn(c+ βn + βn−1), n ≥ 1 , θn,n−2 = γnγn−1 for n ≥ 2,

θn,k = 0, 0 ≤ k ≤ n− 3 for n ≥ 3.

(15)

PROPOSITION 1. Let consider the following connection problems

Qn(x) =

n∑
k=0

µn,kPk(x) and Φ(x)Qn(x) =

n+t∑
k=0

λn,kPk(x) for n ≥ 0.

Then the following two statements hold.

(i) If Φ(x) = x+ c, then λn,k = µn+1,k + (βn + c)µn,k + γnµn−1,k for n, k ≥ 0.

(ii) If Φ(x) = x2 + cx+ d, then

λn,k = µn+2,k + θn,n+1µn+1,k + θn,nµn,k + θn,n−1µn−1,k + θn,n−2µn−2,k

for n, k ≥ 0 where θn,k is given in (15).

PROOF. (i)(respectively (ii)) is an immediate consequence of (14)(respectively
(15)).
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3 Applications

3.1 The Continuous Classical Hermite MOPS {Hn}n≥0
Let {Hn}n≥0 be the Hermite MOPS satisfying (2) with ξn = 0 and αn+1 = 1

2 (n + 1)

for n ≥ 0 [3]. Let consider the two shifted MOPS {H̃n}n≥0 and {Ĥn}n≥0 defined by

H̃n(x) = (τ−yHn)(x) = Hn(x+ y) for y ∈ C

and
Ĥn(x) = a−nHn(ax) for a ∈ C \ {0}.

Accordingly to (3), we obtain

ξ̃n = −y and α̃n+1 =
1

2
(n+ 1) for n ≥ 0, (16)

and

ξ̂n = 0 and α̂n+1 =
1

2a2
(n+ 1) for n ≥ 0. (17)

3.1.1 The Connection Problem Ĥn(x) =
∑n
k=0 µn,kHk(x)

Choosing Qn(x) = Ĥn(x), Pn = Hn and Φ(x) = 1 (t = 0) in (1), (6)-(7) and by virtue
of (17), then (9) and (12) lead to

λn,n−1 = 0 for n ≥ 1 and λn,n−2 =
1

2

(
1− 1

a2

)( n

n−2

)
for n ≥ 2.

By induction and (13), we get λn,n−(2j+1) = 0. Suppose that

λk,k−2j =

∏j
ν=1(2ν − 1)

2j

(
1− 1

a2

)j ( k
2j

)
for 0 < 2j ≤ n− 2 and 2j ≤ k ≤ n.

On account of (13) an other time, we obtain

λn,n−(2j+2) =

n−1∑
k=2j+1

{αk−2jλk,k−2j − γkλk−1,k−1−2j}.

It’s easy to verify that

αk−2jλk,k−2j =

∏j
ν=0(2ν + 1)

2j+1

(
1− 1

a2

)j ( k

2j+1

)
and

γkλk−1,k−1−2j =

∏j
ν=0(2ν + 1)

2j+1

(
1− 1

a2

)j ( 1

a2

)( k

2j+1

)
.
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Then

λn,n−(2j+2) =

∏j
ν=0(2ν + 1)

2j+1

(
1− 1

a2

)j+1 n−1∑
k=2j+1

( k

2j+1

)
=

∏j
k=0(2k + 1)

2j+1

(
1− 1

a2

)j+1 ( n

2j+2

)
.

Lastly, we obtain
λn,n−j = 0 for j = 2k + 1 and k ≤ [n−1

2 ],

λn,n−j =
∏j

k=0(2k+1)

2k

(
1− 1

a2

)k ( n
2k

)
for j = 2k and 1 ≤ k ≤ [n2 ],

λn,n = 1 for n ≥ 0.

Hence,

a−nHn(ax) =

[n2 ]∑
k=0

(2k)!

22kk!

(
1− 1

a2

)k ( n
2k

)
Hn−2k(x) for n ≥ 0.

Consequently, we recover again the so-called duplication formula for the Hermite poly-
nomials [6].

3.1.2 The Connection Problem H̃n(x) =
∑n
k=0 µn,kHk(x)

On account of (9), (12) with (16), where Pn = Hn, Qn = H̃n and t = 0, we get

µn,n−1 =
( n

n−1

)
y, n ≥ 1 and µn,n−2 =

( n

n−2

)
y2 for n ≥ 2.

Suppose that

µk,k−i =
( k

k−i
)
yi for i ≤ j ≤ n− 1 and j ≤ k ≤ n.

By virtue of (13), we obtain

µn,n−(j+1) =

n−1∑
k=j

{
yµk,k−j + αk+1−jµk,k−(j−1) − αkµk−1,k−1−(j−1)

}
.

But αk+1−jµk,k−(j−1) = αkµk−1,k−1−(j−1). Hence,

µn,n−(j+1) = yj+1
n−1∑
k=j

(k
j

)
= yj+1

( n

j+1

)
= yj+1

( n

n−(j+1)

)
.

Consequently, we recover again the well known addition formula [6]

Hn(x+ y) =

n∑
k=0

(n
k

)
yn−kHk(x), n ≥ 0.



I. B. Salah 69

3.1.3 The Connection Problem (x2 + cx+ d)H̃n(x) =
∑n+2
k=0 λn,kHk(x), c, d ∈ C

Using the connection problem in 3.1.2 and applying Proposition 1., we get that, for
n ≥ 0 and k ≤ n,

λn,n+1 = c+ ny, λn,n+2 = 1,

λn,k = yn−2−k(n
k

){
y4 (n+ 2)(n+ 1)

(n+ 2− k)(n+ 1− k)
+ (c− 2y)y3 n+ 1

n+ 1− k

+y2(n+
1

2
+ d+ y2 − cy) + y

(c− 2y)(n− k)

2
+

(n− k)(n− k − 1)

4

}
.

3.2 The Discrete Classical Meixner MOPS {M (α,a)
n }n≥0

Let us consider the Meixner MOPS {M (α,a)
n }n≥0 of parameters α, a. It satisfies (2)

with [3]

ξn =
aα+ n(1 + a)

1− a for n ≥ 0 and αn =
an(α+ n− 1)

(1− a)2
for n ≥ 1. (18)

3.2.1 The Connection Problem M
(β,a)
n (x) =

∑n
k=0 µn,kM

(α,a)
k (x)

Choosing Pn = M
(α,a)
n and Qn = M

(β,a)
n in (1). On account of (18), (9) gives

µn,n−1 =

n−1∑
k=0

(ξk − βk) = n

(
a

1− a

)
(α− β) =

a

1− a
( n

n−1

)
(α− β)1,

where

(x)n :=

n−1∏
k=0

(x+ k) =
Γ(x+ n)

Γ(x)
for n ≥ 1,

being the well-known Pochhammer’s symbol and Γ be the Gamma function [3]. Then

µn,n−1 =
( n

n−1

)( a

a− 1

)n−(n−1)

(β − α)n−(n−1).

Likewise, taking (12) into account and by virtue of (18), we have

µn,n−2 =
n−1∑
k=1

(ξk−1 − βk)λk,k−1 +

n−1∑
k=1

(αk − γk)

=

n−1∑
k=1

{
a(α− β)− (1 + a)

1− a
a

1− a (α− β)k

}
+

n−1∑
k=1

ak(α− β)

(1− a)2

=

(
a

1− a

)2

(α− β)(α− β − 1)
(n− 1)n

2

=
( n

n−2

)( a

a− 1

)n−(n−2)

(β − α)n−(n−2).
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Suppose that

µk,k−i =
(n
i

)( a

a− 1

)i
(β − α)i for i ≤ j and k ≤ n.

Using (13) and by virtue of (18) an other time, we obtain

µn,n−(j+1)

=

n−1∑
k=j

{
(ξk−j − βk)µk,k−j + αk+1−jµk,k−(j−1) − γkµk−1,k−1−(j−1)

}

=
aj

(a− 1)j+1
(β − α)j

[a(β − α+ j) + j]

n−1∑
k=j

(k
j

)
−
n−1∑
k=j

(k − j + 1)
( k

j−1

)
=

(
a

a− 1

)j+1

(β − α)j+1

n−1∑
k=j

(k
j

)
=

( n

j+1

)( a

a− 1

)j+1

(β − α)j+1.

Hence,

µn,n−j =
(n
j

)( a

a− 1

)j
(β − α)j for 0 ≤ j ≤ n and n ≥ 1.

3.2.2 The Connection Problem (x+ c)M
(β,a)
n (x) =

∑n
k=0 λn,kM

(α,a)
k (x), c ∈ C

Taking into account Proposition 1. and the connection problem 3.2.1, the coeffi cients
between {M (α,a)

n }n≥0 and {M (α,b)
n }n≥0 by respect to Φ(x) = x+c are given by λn,n+1 =

1 and

λn,k =
(n
k

)( a

a− 1

)n+1−k
(β − α)n−k ×

{
(n+ 1)(β − α+ n− k)

n+ 1− k

− (1− a)c+ aβ + n(1 + a)

a
+

(β + n− 1)(n− k)

a(β − α+ n− k − 1)

}
for n ≥ 0 and 0 ≤ k ≤ n.

3.3 The QuantumClassical Little q-LaguerreMOPS {Ln(.; a|q)}n≥0
Let us consider the Little q-Laguerre MOPS {Ln(.; a|q)}n≥0 of parameters a 6= 0. It
satisfies (2) with [4]{

ξn = {1 + a− a(1 + q)qn}qn for n ≥ 0,

αn = a(1− qn)(1− aqn)q2n−1 for n ≥ 1.
(19)
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On account of (3), its shifted MOPS {q−nhqLn(.; a|q)}n≥0 satisfies (4) with{
βn = {1 + a− a(1 + q)qn}qn−1 for n ≥ 0,

γn = a(1− qn)(1− aqn)q2n−3 for n ≥ 1.
(20)

3.3.1 The Connection Problem q−nLn(qx; a|q) =
∑n
k=0 µn,kLk(x; a|q)

Choosing Pn(x) = Ln(x; a|q) and Qn(x) = q−nLn(qx; a|q) in (1). On account of (19)-
(20), (9) gives

µn,n−1 = −q−1(1− qn)(1− aqn) for n ≥ 1.

Moreover, after some calculations taking into account (19)-(20) and (12)-(13) we get

µn,n−2 = 0 for n ≥ 2 and µn,n−3 = 0 for n ≥ 3.

Consequently, formula (13) an other time yields µn,n−k = 0 for 0 ≤ k ≤ n−2. Therefore,

q−nLn(qx; a|q) = Ln(x; a|q)− q−1(1− qn)(1− aqn)Ln−1(x; a|q) for n ≥ 0 (21)

with L−1(x; a|q) := 0.

3.3.2 The Connection Problem (x+c)q−nLn(qx; a|q) =
∑n+1
k=0 λn,kLk(x; a|q), c ∈

C

Taking into account Proposition 1. and the relationship (21) in the connection problem
3.3.1, the coeffi cients between {q−nhqLn(.; a|q)}n≥0 and {Ln(.; a|q)}n≥0 by respect to
Φ(x) = x+ c, c ∈ C and

(x+ c)q−nLn(qx; a|q) =

n+1∑
k=n−2

λn,kLk(x; a|q)

are given by

λn,n+1 = 1, λn,n = c− q−1 +
{

(1 + a)(1 + q)− aqn(1 + q + q2)
}
qn−1,

λn,n−1 = −q−1(1− qn)(1− aqn)
{
c+ qn−1 − aqn−1

(
1− qn−1(1 + q + q2)

)}
,

and
λn,n−2 = −a(1− qn−1)(1− qn)(1− aqn−1)(1− aqn)q2n−4.
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