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Abstract
In this article, we consider a system of κth-order derivatives of the dependent

variables of coupled Klein-Gordon equations to improve recent results obtained
in [10, 31, 33] using idea in [25]. Using the potential well method, we prove that
the solutions of (1) exist globally, under some conditions on the initial datum.

1 Introduction

In this paper, we consider a system of κth-order derivatives of the dependent variables
of coupled Klein-Gordon equations

u′′1 + (−1)κ∆κu1 +m2
1u1 + α1(t)

∫ t
0
g1(t− s)∆κu1(x, s)ds+ |u′1|r−2u′1

= |u1|p−2u1|u2|p,

u′′2 + (−1)κ∆κu2 +m2
2u2 + α2(t)

∫ t
0
g2(t− s)∆κu2(x, s)ds+ |u′2|r−2u′2

= |u2|p−2u2|u1|p

(1)

where mi, i = 1, 2 are non-negative constants, r, p ≥ 2, κ ≥ 1. In a bounded domain
Ω ⊂ Rn Yaojun Ye [33] introduced related problem to (1) with κ = 1, αi = 0, i =
1, 2, supplemented with the initial and Dirichlet boundary conditions. By using the
potential well method, global existence is discussed and asymptotic stability is also
given, by using multiplied method.
Erhan Piskin and Necat Polat [10] considered a system of class of nonlinear higher-

order wave equations (1) with mi = gi = 0, i = 1, 2 and strong nonlinearity in sources.
Under suitable conditions on the initial datum, theorems of global existence and decay
rate are proved.
In (1), ui = ui(t, x), i = 1, 2, wherex ∈ Ω is a bounded domain of Rn, (n ≥ 1) with

a smooth boundary ∂Ω, t > 0. Our system is supplemented with the following initial
conditions

ui(x, 0) = ui0(x) ∈ Hκ
0 (Ω), i = 1, 2, (2)
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122 Existence of Solutions for a System of Klein-Gordon Equations

u′i(x, 0)) = ui1(x) ∈ L2(Ω), i = 1, 2, (3)

and boundary conditions

ui(x) =
∂ui
∂ν

= · · · = ∂κ−1ui
∂νκ−1

= 0 for x ∈ ∂Ω and i = 1, 2, (4)

where ν is the outward normal to the boundary.
We mention here that

|∇κu|2 = (∆κ/2u)2 for pair value of κ

and
|∇κu|2 = |∇(∆(κ−1)/2u)|2 for odd κ

where

|∇u|2 =

n∑
i=1

(
∂u

∂xi

)2

and ∆u =

n∑
i=1

∂2u

∂x2
i

.

This kind of systems (gi 6= 0, i = 1, 2) appears in the models of nonlinear viscoelasticity.
Viscoelastic materials have properties between two types, elastic materials and viscous
fluids. This two types of materials are usually considered in basic texts on continuum
mechanics. At each material point of an elastic material the stress at the present
time depends only on the present value of the strain. On the other hand, for an
incompressible viscous fluid the stress at a given point is a function of the present
value of the velocity gradient at that point. Such materials have memory: the stress
depends not only on the present values of the strain and/or velocity gradient, but also
on the entire temporal history of motion.
The systems of nonlinear wave equations go back to Reed [27] who proposed a

system in three space dimensions, where this type of system was completely analyzed.
Existence and uniqueness of global weak solutions, asymptotic behavior for an anal-
ogous hyperbolic-parabolic system of related problems have attracted a great deal of
attention in the last decades, and many results have appeared. See in this directions
[5, 6, 7, 8, 12, 17, 22, 21, 24] and references therein.
We mention the work of [2], where authors studied the following system:{

utt −∆u+ |ut|m−1ut = f1(u, v),

vtt −∆v + |vt|r−1vt = f2(u, v),
(5)

in Ω × (0, T ) with initial and boundary conditions and the nonlinear functions f1

and f2 satisfying appropriate conditions. They proved under some restrictions on the
parameters and the initial data many results on the existence of a weak solution. They
also showed that any weak solution with negative initial energy blows up in finite time
using the same techniques as in [11].
In [20], authors considered the nonlinear viscoelastic system

utt −∆u+
t∫

0

g(t− s)∆u(x, s)ds+ |ut|m−1
ut = f1(u, v),

vtt −∆v +
t∫

0

h(t− s)∆v(x, s)ds+ |vt|r−1
vt = f2(u, v),

(6)



K. Zennir and A. Guesmia 123

for x ∈ Ω and t > 0 where

f1(u, v) = a |u+ v|2(ρ+1)
(u+ v) + b |u|ρ u |v|(ρ+2)

,

f2(u, v) = a |u+ v|2(ρ+1)
(u+ v) + b |u|(ρ+2) |v|ρ v,

and they prove a global nonexistence theorem for certain solutions with positive initial
energy, the main tool of the proof is a method used in [28].
The non-critical case of (1) where gi = 0,m = 2, i = 1, 2, has been studied re-

cently in [26]. M. A. Rammaha and Sawanya Sakuntasathien focus on the global
well-posedness of the system of nonlinear wave equations

utt −∆u+
(
d|u|k + e|v|l

)
|ut|m−1ut = f1(u, v),

vtt −∆v +
(
d′ |v|θ + e′ |u|ρ

)
|vt|r−1vt = f2(u, v),

(7)

in a bounded domain Ω ⊂ Rn, n = 1, 2, 3, and 0 < r,m < 1, with Dirichlet boundary
conditions. The nonlinearities f1(u, v) and f2(u, v) act as strong sources in the system.
Under some restriction on the parameters in the system, they obtained several results on
the existence and uniqueness of solutions. In addition, they proved that weak solutions
blow up in finite time whenever the initial energy is negative and the exponent of the
source term is more dominant than the exponents of both damping terms. This last
result was extended by A. Benaissa et al. in [3] with positive initial energy, r,m > 1
and for n > 0.
The gender of our systems (mi 6= 0, i = 1, 2) has been proposed first by Segal [30]

in the next coupled Klein-Gordon equations which is considered in the study of the
quantum field theory and defines the motion of a charged meson in an electromagnetic
field {

u′′1 −∆u1 +m2
1u1 + h1u1u

2
2 = 0,

u′′2 −∆u2 +m2
2u2 + h2u

2
1u2 = 0,

(8)

where m1,m2, h1 and h2 are non-negative constants.
When gi = 0, i = 1, 2, Yaojun Ye generalized the problem (8), where author studied

coupled nonlinear Klein-Gordon equations with nonlinear damping and source terms,
in a bounded domain with the initial and Dirichlet boundary conditions{

u′′1 −∆u1 +m2
1u1 + a|u′1|αu′1 = b|u1|βu1|u2|β+2,

u′′2 −∆u2 +m2
2u2 + a|u′2|αu′2 = b|u2|βu2|u1|β+2,

(9)

where m1,m2, a, b are non-negative constants, α > 0 and β ≥ 0. The existence of
global solutions is discussed by using the potential well method and the asymptotic
stability is also given by applying a Lemma due to V. Komornik [14].

REMARK 1.1. Noting here that our contribution is: We investigate the same
system in [33] with the presence of the viscoelastic terms and potential functions,
under additional condition (18), we prove that the solutions stay in the stable set (13).
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2 Preliminaries

From now on, we denote by ci, i = 0, 1, 2, ..., used throughout this paper, various
positive constants which may be different at different occurrences and in the sequel,
for the sake of simplicity we will denote the t derivative value dv/dt by v′ and d2v/dt2

by v′′.
We assume that, for i = 1, 2, the relaxation functions gi : R+ −→ R+ and the

potential αi : R+ −→ R+ are nonincreasing differentiable satisfying:

gi(0) > 0, +∞ >

+∞∫
0

gi(s)ds, 1− αi(t)
t∫

0

gi(s)ds ≥ li > 0, and αi(t) > 0. (10)

The following notation will be used throughout this paper

(Φ ◦Ψ)(t) =

∫ t

0

Φ(t− τ) ‖Ψ(t)−Ψ(τ)‖22 dτ. (11)

The following technical Lemma will play an important role.

LEMMA 2.1. For any v ∈ C1 (0, T,Hκ(Ω)) we have∫
Ω

α(t)

∫ t

0

g(t− s)∆κv(s)v′(t)dsdx

=
1

2

d

dt
α(t) (g ◦ ∇κv) (t)− 1

2

d

dt

[
α(t)

∫ t

0

g(s)

∫
Ω

|∇κv(t)|2 dxds
]

−1

2
α(t) (g′ ◦ ∇κv) (t) +

1

2
α(t)g(t)

∫
Ω

|∇κv(t)|2 dxds

−1

2
α′(t) (g ◦ ∇κv) (t) +

1

2
α′(t)

∫ t

0

g(s)ds

∫
Ω

|∇κv(t)|2 dxds.

PROOF. It’s not hard to see∫
Ω

α(t)

∫ t

0

g(t− s)∆κv(s)v′(t)dsdx

= −α(t)

∫ t

0

g(t− s)
∫

Ω

∇κv′(t)∇κv(s)dxds

= −α(t)

∫ t

0

g(t− s)
∫

Ω

∇κv′(t) [∇κv(s)−∇κv(t)] dxds

−α(t)

∫ t

0

g(t− s)
∫

Ω

∇κv′(t)∇κv(t)dxds.
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Consequently, ∫
Ω

α(t)

∫ t

0

g(t− s)∆κv(s)v′(t)dsdx

=
1

2
α(t)

∫ t

0

g(t− s) d
dt

∫
Ω

|∇κv(s)−∇κv(t)|2 dxds

−α(t)

∫ t

0

g(s)

(
d

dt

1

2

∫
Ω

|∇κv(t)|2 dx
)
ds,

which implies,∫
Ω

α(t)

∫ t

0

g(t− s)∆κv(s)v′(t)dsdx

=
1

2

d

dt

[
α(t)

∫ t

0

g(t− s)
∫

Ω

|∇κv(s)−∇κv(t)|2 dxds
]

−1

2

d

dt

[
α(t)

∫ t

0

g(s)

∫
Ω

|∇κv(t)|2 dxds
]

−1

2
α(t)

∫ t

0

g′(t− s)
∫

Ω

|∇κv(s)−∇κv(t)|2 dxds

+
1

2
α(t)g(t)

∫
Ω

|∇κv(t)|2 dxds− 1

2
α′(t)

∫ t

0

g(t− s)
∫

Ω

|∇κv(s)−∇κv(t)|2 dxds

+
1

2
α′(t)

∫ s

0

g(s)ds

∫
Ω

|∇κv(t)|2 dxds.

This completes the proof.

The energy functional E(t) associated with our system is given by

E(t) =
1

2

2∑
i=1

‖u′i‖22 + J(t) (12)

where

J(t) =
1

2

2∑
i=1

(
1− αi(t)

∫ t

0

gi(s)ds

)
‖∇κui‖22

+
1

2

2∑
i=1

αi(t)(gi ◦ ∇κui) +
1

2

2∑
i=1

m2
i ‖ui‖22 −

1

p
‖u1u2‖pp.

Now, we introduce the stable set as follows:

W =
{

(u1, u2) ∈ (Hκ
0 (Ω))2 : I(t) > 0 and J(t) < d

}
∪ {(0, 0)} (13)
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where

I(t) =

2∑
i=1

(
1− αi(t)

∫ t

0

gi(s)ds

)
‖∇κui‖22

+

2∑
i=1

αi(t)(gi ◦ ∇κui) +

2∑
i=1

m2
i ‖ui‖22 − ‖u1u2‖pp.

REMARK 2.2. We notice that the mountain pass level d given in (13) defined by

d = inf

 sup
(u1,u2)∈(Hκ0 (Ω))

2\{(0,0)}µ≥0

J (µ (u1, u2))

 .

Also, by introducing the so called "Nehari manifold"

N =
{

(u1, u2) ∈ (Hκ
0 (Ω))

2 \ {(0, 0)} : I (t) = 0
}
.

It is readily seen that the potential depth d is also characterized by

d = inf
(u1,u2)∈N

J(t).

This characterization of d shows that

dist ((0, 0),N ) = min
(u1,u2)∈N

‖(u1, u2)‖(Hκ0 (Ω))
2 .

The notation ‖.‖ stands for the norm in L2 and we denote by ‖.‖X the norm in
the space X. Also, the following imbedding will be used frequently without mention
‖u‖p ≤ C‖∇κu‖2 for u ∈ Hκ

0 (Ω) where{
2 ≤ p < +∞ if n = κ, 2κ,

2 ≤ p ≤ 2n
n−2κ if , n ≥ 3κ.

(14)

We introduce the following definition of weak solution to (1)-(4)

DEFINITION 2.3. A pair of functions (u1, u2) is said to be a weak solution of
(1)-(4) on [0, T ] if u1, u2 ∈ Cw([0, T ], Hκ

0 (Ω)), u′1, u
′
2 ∈ Cw([0, T ], L2(Ω)), (u10, u20) ∈

Hκ
0 (Ω)×Hκ

0 (Ω), (u11, u21) ∈ L2(Ω)× L2(Ω) and (u1, u2) satisfies∫ t

0

∫
Ω

|u1|p−2u1|u2|pφdxds =

∫ t

0

∫
Ω

u′′1φdxds+m2
1

∫ t

0

∫
Ω

u1φdxds

+

∫ t

0

∫
Ω

∇κu1∇κφdxds+

∫ t

0

∫
Ω

|u′1|r−2u′1φdxds

−
∫ t

0

∫
Ω

α1(t)

∫ s

0

g1(t− τ)∇κu1(x, τ)∇κφdτdxds
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and∫ t

0

∫
Ω

|u2|p−2u2|u1|pψdxds =

∫ t

0

∫
Ω

u′′2ψdxds+m2
2

∫ t

0

∫
Ω

u2ψdxds

+

∫ t

0

∫
Ω

∇κu2∇κψdxds+

∫ t

0

∫
Ω

|u′2|r−2u′2ψdxds

−
∫ t

0

∫
Ω

α2(t)

∫ s

0

g2(t− τ)∇κu2(x, τ)∇κψdτdxds

for all test functions φ, ψ ∈ Hκ
0 (Ω)∩L2(Ω) and almost all t ∈ [0, T ] where Cw([0, T ], X)

denotes the space of weakly continuous functions from [0, T ] into Banach space X.

In order to state the local existence result, we introduce the following complete
metric space (the proof is similar to that in [29, 32, 31])

YT = {(u, v) : u, v ∈ C ([0, T ];Hκ
0 (Ω)×Hκ

0 (Ω)) ,

u′, v′ ∈ C
(
[0, T ];L2(Ω)× L2(Ω)

)}
THEOREM 2.4. Let (u10, u20) ∈ (Hκ

0 (Ω))2 and (u11, u21) ∈ (L2(Ω))2 for i = 1, 2
be given. Suppose that r > 2 and p satisfies{

1 ≤ p < +∞ if n = κ, 2κ,

1 ≤ p ≤ 4κ−n
n−2κ if n ≥ 3κ.

(15)

Then, under assumptions on two functions gi, i = 1, 2, the problem (1)-(4) has a unique
local solution (u1(t, x), u2(t, x)) ∈ YT for T small enough.

3 Global Existence Result

LEMMA 3.1. Suppose that (10) and (15) hold. Let (u1, u2) be the solution of the
system (1)-(4). Then the energy functional is a non-increasing function, that is for all
t ≥ 0,

E′(t) =
1

2

2∑
i=1

αi(t)(g
′
i ◦ ∇κui)−

1

2

2∑
i=1

αi(t)gi(t)‖∇κui‖22

+
1

2

2∑
i=1

α′(t)(gi ◦ ∇κui)−
1

2

2∑
i=1

α′(t)

(∫ t

0

gi(s)ds

)
‖∇κui‖22

≤ 1

2

2∑
i=1

α′(t)(gi ◦ ∇κui)−
1

2

2∑
i=1

α′(t)

(∫ t

0

gi(s)ds

)
‖∇κui‖22. (16)

We will prove the invariance of the setW. That is for some t0 > 0 if (u1(t0), u2(t0)) ∈
W, then (u1(t), u2(t)) ∈ W for t ≥ t0 and i = 1, 2. We begin with by the existence of
the potential depth in the next Lemma.
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LEMMA 3.2. d is a positive constant.

PROOF. We have

J(µ(u1, u2)) =
µ2

2

2∑
i=1

(
1− αi(t)

∫ t

0

gi(s)ds

)
‖∇κui‖22 +

µ2

2

2∑
i=1

αi(t)(gi ◦ ∇κui)

+
µ2

2

2∑
i=1

m2
i ‖ui‖22 −

µ2p

p
‖u1u2‖pp.

Using (10) to get

J(µ(u1, u2)) ≥ K(µ),

where

K(µ) =
µ2

2

2∑
i=1

li‖∇κui‖22 +
µ2

2

2∑
i=1

m2
i ‖ui‖22 −

µ2p

p
‖u1u2‖pp.

By differentiating the second term in the last equality with respect to µ, to get

d

dµ
K(µ) = µ

2∑
i=1

li‖∇κui‖22 + µ

2∑
i=1

m2
i ‖ui‖22 − 2µ2p−1‖u1u2‖pp.

For µ1 = 0 and

µ2 = 2−
1

2(p−1)

(∑2
i=1 li‖∇

κui‖22 +
∑2
i=1m

2
i ‖ui‖22

‖u1u2‖pp

) 1
2(p−1)

,

then we have

d

dµ
K(µ) = 0.

As

d

dµ
K(µ2) = 0, K(µ1) = 0,

and since

d2

dµ2
K(µ)

∣∣
µ=µ2

< 0,
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we see that

sup
µ≥0

j(µ) ≥ sup
µ≥0

K(µ) = K(µ2)

= 2
−2p

2(p−1)

(∑2
i=1 li‖∇

κui‖22 +
∑2
i=1m

2
i ‖ui‖22

‖u1u2‖pp

) 2
2(p−1)

×(
2∑
i=1

li‖∇κui‖22 +

2∑
i=1

m2
i ‖ui‖22

)

−1

p
2

−2p
2(p−1)

(∑2
i=1 li‖∇

κui‖22 +
∑2
i=1m

2
i ‖ui‖22

‖u1u2‖pp

) 2p
2(p−1)

‖u1u2‖pp

= 2
−2p

2(p−1)

(
p− 1

p

)(∑2
i=1 li‖∇

κui‖22 +
∑2
i=1m

2
i ‖ui‖22

‖u1u2‖p

) 2p
2(p−1)

.

It follows from the Holder inequality for some C > 0 and assumptions (10)

‖u1u2‖p ≤ ‖u1‖2p‖u2‖2p ≤ C2‖∇κu1‖2‖∇κu2‖2

≤ 1

2
C2

(
2∑
i=1

‖∇κui‖22

)
≤ 1

2
C2

(
2∑
i=1

li‖∇κui‖22 +

2∑
i=1

m2
i ‖ui‖22

)
,

which implies that

‖u1u2‖p∑2
i=1 li‖∇

κui‖22 +
∑2
i=1m

2
i ‖ui‖22

≤ 1

2
C2.

Since p > 1, we obatin that

sup
µ≥0

j(µ) ≥ 2
−2p

2(p−1)

(
p− 1

p

)[∑2
i=1 li‖∇

κui‖22 +
∑2
i=1m

2
i ‖ui‖22

‖u1u2‖p

] 2p
2(p−1)

≥ (p− 1)

p
C

−2p
(p−1) = d > 0.

Then, by the definition of d, we conclude that d > 0 for p > 1.

LEMMA 3.3. W is a bounded neighborhood of 0 in Hκ
0 (Ω).
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PROOF. For u ∈W, and u 6= 0, we have

J(t) =
1

2

2∑
i=1

(
1− αi(t)

∫ t

0

gi(s)ds

)
‖∇κui‖22 +

1

2

2∑
i=1

αi(t)(gi ◦ ∇κui)

+
1

2

2∑
i=1

m2
i ‖ui‖22 −

1

p
‖u1u2‖pp

=

(
p− 2

2p

)[ 2∑
i=1

(
1− αi(t)

∫ t

0

gi(s)ds

)
‖∇κui‖22

+

2∑
i=1

αi(t)(gi ◦ ∇κui) +

2∑
i=1

m2
i ‖ui‖22

]
+

1

p
I(t)

≥
(
p− 2

2p

)[ 2∑
i=1

(
1− αi(t)

∫ t

0

gi(s)ds

)
‖∇κui‖22

+

2∑
i=1

αi(t)(gi ◦ ∇κui) +

2∑
i=1

m2
i ‖ui‖22

]
. (17)

By using (10), (17) becomes

J(t) ≥
(
p− 2

2p

) 2∑
i=1

(
1− αi(t)

∫ t

0

gi(s)ds

)
‖∇κui‖22

≥
(
p− 2

2p

) 2∑
i=1

li‖∇κui‖22

≥
(
p− 2

2p

)
min(l1, l2)

2∑
i=1

‖∇κui‖22.

It follows that

2∑
i=1

‖∇κui‖22 ≤
1

min(l1, l2)

(
2p

p− 2

)
J(t) <

1

min(l1, l2)

(
2p

p− 2

)
d = R.

Consequently, ∀(u1, u2) ∈W, we have (u1, u2) ∈ B, where

B =

{
(u1, u2) ∈ (Hκ

0 (Ω))2 :

2∑
i=1

‖∇κui‖22 < R

}
.

This completes the proof.

In the following Lemma, we will see that if the initial data (or for some t0 > 0) is
in the set W , then the solution stays there forever.
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LEMMA 3.4. Suppose that (10), (15) and(
C2

(2 min(l1, l2))

)p(
2pE(0)

p− 2

)(p−1)

< 1. (18)

hold, where C is the best Poincare’s constant. If (u10, u20) ∈ W and (u11, u21) ∈(
L2(Ω)

)2
, then the solution (u1(t), u2(t)) ∈W for t ≥ 0.

PROOF. Since (u10, u20) ∈W , we see that

I(t) =

2∑
i=1

‖∇κui0‖22 +

2∑
i=1

m2
i ‖ui0‖22 − ‖u10u20‖pp > 0.

Consequently, by continuity, there exists Tm ≤ T such that

I(u(t)) =

2∑
i=1

(
1− αi(t)

∫ t

0

gi(s)ds

)
‖∇κui‖22 +

2∑
i=1

αi(t)(gi ◦ ∇κui)

+

2∑
i=1

m2
i ‖ui‖22 − ‖u1u2‖pp ≥ 0 for t ∈ [0, Tm] .

This gives

J(t) =
1

2

2∑
i=1

(
1− αi(t)

∫ t

0

gi(s)ds

)
‖∇κui‖22 +

1

2

2∑
i=1

αi(t)(gi ◦ ∇κui) (19)

+
1

2

2∑
i=1

m2
i ‖ui‖22 −

1

p
‖u1u2‖pp

=

(
p− 2

2p

)[ 2∑
i=1

(
1− αi(t)

∫ t

0

gi(s)ds

)
‖∇κui‖22 +

2∑
i=1

αi(t)(gi ◦ ∇κui)

+

2∑
i=1

m2
i ‖ui‖22

]
+

1

p
I(u(t))

≥
(
p− 2

2p

)[ 2∑
i=1

(
1− αi(t)

∫ t

0

gi(s)ds

)
‖∇κui‖22 +

2∑
i=1

αi(t)(gi ◦ ∇κui)

+

2∑
i=1

m2
i ‖ui‖22

]
.

By using (10) and the fact that
∫ t

0
gi(s)ds ≤

∫∞
0
gi(s)ds, we easily see that, for t ∈

[0, Tm],

2∑
i=1

‖∇κui‖22 ≤ 1

min(l1, l2)

(
2p

p− 2

)
J(t) ≤ 1

min(l1, l2)

(
2p

p− 2

)
E(t)

≤ 1

min(l1, l2)

(
2p

p− 2

)
E(0).



132 Existence of Solutions for a System of Klein-Gordon Equations

We then exploit (10), (15) and from the Holder inequality for some C > 0. So we have

‖u1u2‖p ≤ ‖u1‖2p‖u2‖2p ≤ C2‖∇κu1‖2‖∇κu2‖2 ≤
1

2
C2

(
2∑
i=1

‖∇κui‖22

)
.

for C = C(n, p,Ω).
Consequently, we have

‖u1u2‖pp ≤ 2−pC2p

(
2∑
i=1

‖∇κui‖22

)p

≤ 2−pC2p

(
2∑
i=1

‖∇κui‖22

)p−1( 2∑
i=1

‖∇κui‖22

)

≤ C2p (2 min(l1, l2))
−p
(

2p

p− 2

)(p−1)

E(0)(p−1)

(
2∑
i=1

li‖∇κui‖22

)

≤ β

(
2∑
i=1

li‖∇κui‖22

)
,

where

β = C2p (2 min(l1, l2))
−p
(

2p

p− 2

)(p−1)

E(0)(p−1).

Which means, by the definition of li, i = 1, 2,

‖u1u2‖pp ≤ β

(
2∑
i=1

li‖∇κui‖22

)

≤
2∑
i=1

(
1− αi(t)

∫ t

0

gi(s)ds

)
‖∇κui‖22

≤
2∑
i=1

(
1− αi(t)

∫ t

0

gi(s)ds

)
‖∇κui‖22 +

2∑
i=1

αi(t)(gi ◦ ∇κui) +

2∑
i=1

m2
i ‖ui‖22.

Therefore, I(t) > 0 for all t ∈ [0, Tm], by taking the fact that

lim
t 7→Tm

C2p (2 min(l1, l2))
−p
(

2p

p− 2

)(p−1)

E(0)(p−1) ≤ β < 1.

This shows that the solution (u1(t), u2(t)) ∈ W, for all t ∈ [0, Tm] . By repeating this
procedure Tm extends to T.

THEOREM 3.5. Suppose that (10), (15) and (18) hold. If (u10, u20) ∈W, (u11, u21) ∈(
L2(Ω)

)2
. Then the local solution (u1, u2) is global in time such that (u1, u2) ∈ GT

where

GT =
{

(u, v) : u, v ∈ L∞
(
R+;Hκ

0 (Ω)×Hκ
0 (Ω)

)
and u′, v′ ∈ L∞

(
R+;L2(Ω)× L2(Ω)

)}
.
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PROOF. In order to prove Theorem 3.5, it suffi ces to show that the following norm

2∑
i=1

‖u′i‖22 +

2∑
i=1

‖∇κui‖22 +

2∑
i=1

m2
i ‖ui‖22

is bounded independently of t. To achieve this, we use (12), (16) and (19) to get

E(0) ≥ E(t) = J(t) +
1

2

2∑
i=1

‖u′i(t)‖
2
2

≥
(
p− 2

2p

)[ 2∑
i=1

(
1− αi(t)

∫ t

0

gi(s)ds

)
‖∇κui‖22 +

2∑
i=1

αi(t)(gi ◦ ∇κui)

+

2∑
i=1

m2
i ‖ui‖22

]
+

1

2

2∑
i=1

‖u′i(t)‖
2
2 +

1

p
I(t)

≥
(
p− 2

2p

)[ 2∑
i=1

li‖∇κui‖22 +
2∑
i=1

αi(t)(gi ◦ ∇κui) +

2∑
i=1

m2
i ‖ui‖22

]

+
1

2

2∑
i=1

‖u′i(t)‖
2
2 +

1

p
I(t)

≥
(
p− 2

2p

)[ 2∑
i=1

li‖∇κui‖22 +

2∑
i=1

m2
i ‖ui‖22

]
+

1

2

2∑
i=1

‖u′i(t)‖
2
2 .

Since I(t) and αi(t)(g ◦ ∇u)(t) are positive, hence

2∑
i=1

‖u′i(t)‖
2
2 +

2∑
i=1

‖∇κui‖22 +

2∑
i=1

m2
i ‖ui‖22 ≤ CE(0),

where C is a positive constant depending only on p and li.
This completes the proof.

Open problem Let us mention here that, it will be interesting to discuss the as-
ymptotic stability of this problem where also, one can establish a general decay rate
estimate for the energy, which will depend on the behavior of both α and g under
following assumption
There exists a non-increasing differentiable function ξi, i = 1, 2 : R+ −→ R+ satis-

fying ξi(t) > 0, g′i(t) ≤ ξi(t)gi(t),∀t ≥ 0, and perhaps other conditions imposed by the
nature of our system.
Acknowledgments. The authors want to thank the referee for his/her careful

reading of the proofs.
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