Open Neighborhood Chromatic Number Of An Antiprism Graph*

Narahari Narasimha Swamy ${ }^{\dagger}$ Badekara Sooryanarayana \ddagger Geetha Kempanapura Nanjunda Swamy ${ }^{\S}$

Received 11 November 2014

Abstract

An open neighborhood k-coloring of a simple connected undirected graph $G(V, E)$ is a k-coloring $c: V \rightarrow\{1,2, \cdots, k\}$, such that, for every $w \in V$ and for all $u, v \in N(w), c(u) \neq c(v)$. The minimum value of k for which G admits an open neighborhood k-coloring is called the open neighborhood chromatic number of G denoted by $\chi_{\text {onc }}(G)$. In this paper, we obtain the open neighborhood chromatic number of the Petersen graph. Also, we determine this number for a family of graphs called antiprism graphs.

1 Introduction

All the graphs considered in this paper are simple, non-trivial, undirected, finite and connected. For standard terminologies, we refer [2] and [7]. A vertex coloring, or simply a coloring, of a graph $G=(V, E)$ is an assignment of colors to the vertices of G. A k-coloring of G is a surjection $c: V \rightarrow\{1,2, \cdots, k\}$. A proper coloring of G is an assignment of colors to the vertices of G so that adjacent vertices are colored differently. A proper k-coloring of G is a surjection $c: V \rightarrow\{1,2, \cdots, k\}$ such that $c(u) \neq c(v)$ if u and v are adjacent in G. The minimum k for which there is a proper k-coloring of G is called the chromatic number of G denoted by $\chi(G)$.

As seen in Fig. 3, the Petersen graph [10] is an undirected graph with 10 vertices and 15 edges and serves as a useful example and counterexample for many problems in graph theory. It is a cubic symmetric graph and is non-planar. The chromatic number and the domination number of the Petersen graph are both equal to 3. The generalized Petersen graph $G P(n, k), n \geq 3$ and $k<n / 2$, is a graph consisting of an inner star polygon $\{n, k\}$ and an outer regular polygon C_{n} with corresponding vertices in the inner and outer polygons connected with edges. The Petersen graph can be obtained from this graph by choosing $n=5$ and $k=2$.

[^0]

Figure 1: Tetrahedral graph

Figure 2: Octahedral graph

The graph obtained by replacing the faces of a polyhedron with its edges and vertices is called the skeleton [3] of the polyhedron. For example, the polyhedral graphs corresponding to the skeletons of tetrahedron and octahedron are illustrated in Fig. 1 and 2.

An n-antiprism [4], $n \geq 3$, is a semiregular polyhedron constructed with $2 n$-gons and $2 n$ triangles. It is made up of two n-gons on top and bottom, separated by a ribbon of $2 n$ triangles, with the two n-gons being offset by one ribbon segment. The graph corresponding to the skeleton of an n-antiprism is called the n-antiprism graph, denoted by $Q_{n}, n \geq 3$ as shown in Fig. 4. As seen from the figure, Q_{n} has $2 n$ vertices and $4 n$ edges, and is isomorphic to the circulant graph $C i_{2 n}(1,2)$. In particular, the 3-antiprism graph Q_{3} is isomorphic to the octahedral graph in Fig. 2.

Figure 3: Petersen graph

Figure 4: n-antiprism graph

An open neighborhood coloring [5] of a graph $G(V, E)$ is a coloring $c: V \rightarrow Z^{+}$, such that for each $w \in V$ and $\forall u, v \in N(w), c(u) \neq c(v)$. An open neighborhood k-coloring of a graph $G(V, E)$ is a k-coloring $c: V \rightarrow\{1,2, \cdots, k\}$ which admits the conditions of an open neighborhood coloring. The minimum value of k for which G admits an open neighborhood k-coloring is called the open neighborhood chromatic number of G denoted by $\chi_{o n c}(G)$.

In [5], we have established some bounds on the open neighborhood chromatic number of a graph. We have also obtained this parameter for an infinite triangular lattice. Further, in [6], we have determined the open neighborhood chromatic number of prism graph which is obtained from the generalized Petersen graph $G P(n, k)$ by choosing $k=1$ and $n \geq 3$.

We recall some of the definitions and results on the open neighborhood chromatic number discussed in [5].

THEOREM 1.1. If f is an open neighborhood k-coloring of $G(V, E)$ with $\chi_{o n c}(G)=$ k, then $f(u) \neq f(v)$ holds where u, v are the end vertices of a path of length 2 in G.

THEOREM 1.2. For any graph $G(V, E), \chi_{o n c}(G) \geq \Delta(G)$.
THEOREM 1.3. If H is a connected subgraph of G, then $\chi_{o n c}(H) \leq \chi_{o n c}(G)$.
THEOREM 1.4. The open neighborhood chromatic number of a connected graph G is 1 if and only if $G \cong K_{1}$ or K_{2}.

THEOREM 1.5. Let $G(V, E)$ be a connected graph on $n \geq 3$ vertices. Then $\chi_{o n c}(G)=n$ if and only if $N(u) \bigcap N(v) \neq \emptyset$ holds for every pair of vertices $u, v \in V(G)$.

THEOREM 1.6. For a path $P_{n}, n \geq 2$,

$$
\chi_{o n c}\left(P_{n}\right)= \begin{cases}1 & \text { if } n=2 \\ 2 & \text { if } n \geq 3\end{cases}
$$

THEOREM 1.7. For a cycle $C_{n}, n \geq 3$,

$$
\chi_{o n c}\left(C_{n}\right)= \begin{cases}2 & \text { if } n \equiv 0(\bmod 4) \\ 3 & \text { otherwise }\end{cases}
$$

DEFINITION 1.8. In a graph G, a subset V_{1} of $V(G)$ such that no two vertices of V_{1} are end vertices of a path of length two in G is called a P_{3}-independent set of G.

In this paper, we obtain the open neighborhood chromatic number of the Petersen graph. Also we determine this number for the n-antiprism graph Q_{n}.

2 Open Neighborhood Chromatic Number of Petersen Graph

OBSERVATION 2.1. For any graph G of order n, if $\chi_{o n c}(G)=n$, then $\operatorname{diam}(G) \leq 2$.
PROOF. Consider a graph G with $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ with $\chi_{o n c}(G)=n$. Suppose $\operatorname{diam}(G) \geq 3$. Without loss in generality, let $d\left(v_{1}, v_{2}\right) \geq 3$. We define a coloring $c: V(G) \rightarrow\{1,2, \cdots, n-1\}$ as follows.

$$
c\left(v_{i}\right)= \begin{cases}1 & \text { if } i=1 \text { or } i=2 \\ i-1 & \text { otherwise }\end{cases}
$$

Clearly, c is an open neighborhood $(n-1)$-coloring of G so that $\chi_{o n c}(G) \leq n-1$, a contradiction.

THEOREM 2.2. If G is any graph of order $n, \chi_{\text {onc }}(G)=2$ if and only if $G \cong P_{n}$, $n \geq 3$ or $G \cong C_{n}, n \equiv 0(\bmod 4)$.

PROOF. Consider a graph G of order n. Suppose $\chi_{o n c}(G)=2$. By Theorem 1.2, we have $\chi_{\text {onc }}(G) \geq \Delta(G)$ so that $\Delta(G) \leq 2$. Thus, G is either a path or a cycle. However, by Theorem 1.7, we know that $\chi_{o n c}\left(C_{n}\right)=2$ only when $n \equiv 0(\bmod 4)$. Also by Theorem 1.6, $\chi_{\text {onc }}\left(P_{n}\right)=2$ for any $n \geq 3$. Thus, if $\chi_{\text {onc }}(G)=2$, then $G \cong P_{n}, n \geq 3$ or $G \cong C_{n}, n \equiv 0(\bmod 4)$. The converse is a direct consequence of Theorem 1.6 and Theorem 1.7.

THEOREM 2.3. The open neighborhood chromatic number of the Petersen graph $G P(5,2)$ is 5 .

PROOF. Let u be any vertex of $G=G P(n, 2)$. Then in any open neighborhood coloring $c, c(u) \neq c(v)$ for any $v \notin N(u)$ as every such vertex is connected by a path of length two from u. Further at most one vertex in $N(u)$ can be given the same color as that of u since there is a path of length two between every $v, w \in N(u)$. Thus, one color can be given to at most two vertices in any open neighborhood coloring c of G so that $\chi_{o n c}(G) \geq 5$. To prove the reverse inequality, consider a coloring $c: V(G) \rightarrow\{1,2,3,4,5\}$ as

$$
c(v)= \begin{cases}1, & \text { if } v=v_{0} \text { or } v=v_{4} \\ 2, & \text { if } v=v_{1} \text { or } v=v_{2} \\ 3, & \text { if } v=u_{3} \text { or } v=v_{3} \\ 4, & \text { if } v=u_{0} \text { or } v=u_{2} \\ 5, & \text { otherwise }\end{cases}
$$

It is easy to verify that c is an open neighborhood 5 -coloring of G so that $\chi_{o n c}(G) \leq 5$. Hence, $\chi_{o n c}(G)=5$.

3 Open Neighborhood Chromatic Number of an Antiprism Graph

In this section, we determine the open neighborhood chromatic number of an n antiprism graph Q_{n}.

OBSERVATION 3.1. Every integer $n \geq 8$ with $n \not \equiv 0(\bmod 5)$ can be expressed as $n=3 k+5 m$ for some integers $m \geq 0$ and $k \geq 1$.

LEMMA 3.2. For any integer $n \geq 3$, $\chi_{o n c}\left(Q_{n}\right) \geq 5$.

PROOF. For each $n \geq 3, Q_{n}$ contains a subgraph H as in Fig. 5. Further, in H, there is a path of length two between every pair of vertices so that $\chi_{o n c}(H)=5$. Hence by Theorem $1.3, \chi_{o n c}\left(Q_{n}\right) \geq 5$.

Figure 5: A subgraph of Q_{n}

OBSERVATION 3.3. In the antiprism graph Q_{n}, the only vertices that are connected to a vertex $u_{i}, 0 \leq i \leq n-1$ by a path of length two are $u_{i \pm 1}, u_{i \pm 2}, v_{i}, v_{i \pm 1}, v_{i+2}$ where the suffix is under modulo n. Similarly, the vertices that are connected to a vertex $v_{i}, 0 \leq i \leq n-1$ by a path of length two are $u_{i}, u_{i \pm 1}, u_{i-2}, v_{i \pm 1}, v_{i \pm 2}$ where the suffix is under modulo n.

LEMMA 3.4. Let Q_{n} be an antiprism graph and let

$$
\begin{equation*}
S_{k}=\left\{u_{i}, v_{j} \mid i \equiv(k+2)(\bmod 5) \text { and } j \equiv k(\bmod 5)\right\} \text { for } 0 \leq k \leq 4 \tag{1}
\end{equation*}
$$

Then each S_{k} is a $P_{3^{-}}$independent set if and only if $n \equiv 0(\bmod 5)$.

PROOF. Let $n \equiv 0(\bmod 5)$. We see that $i \equiv(k+2)(\bmod 5)$. It follows that $i+1 \equiv(k+3)(\bmod 5), i-1 \equiv(k+1)(\bmod 5), i+2 \equiv(k+4)(\bmod 5)$ and $i-2 \equiv k(\bmod 5)$ so that $u_{i \pm 1}, u_{i \pm 2}, v_{i}, v_{i \pm 1}, v_{i+2} \notin S_{k}$. Also, $j \equiv k(\bmod 5)$ implies $j+1 \equiv(k+1)(\bmod 5)$, $j-1 \equiv(k+4)(\bmod 5), j+2 \equiv(k+2)(\bmod 5)$ and $j-2 \equiv(k+3)(\bmod 5)$ so that $u_{j}, u_{j \pm 1}, u_{j-2}, v_{j \pm 1}, v_{j \pm 2} \notin S_{k}$. Hence, by Observation 3.3, S_{k} is a $P_{3^{-}}$independent set for $0 \leq k \leq 4$. Next, we assume that S_{k} is a $P_{3^{-}}$independent set and we prove the converse by contraposition.

Case 1. Suppose $n \equiv 1(\bmod 5)$. Then $v_{0}, v_{n-1} \in S_{0}$. But v_{0} and v_{n-1} are end vertices of a path of length 2 so that S_{0} is not a P_{3} - independent set.

Case 2. Suppose $n \equiv 2(\bmod 5)$. Then $u_{0}, u_{2} \in S_{0}$. But u_{0} and u_{2} are end vertices of a path of length 2 so that S_{0} is not a P_{3} - independent set.

Case 3. Suppose $n \equiv 3(\bmod 5)$. Then $u_{n-1}, v_{0} \in S_{0}$. But u_{n-1} and v_{0} are end vertices of a path of length 2 so that S_{0} is not a $P_{3^{-}}$independent set

Case 4. Suppose $n \equiv 4(\bmod 5)$. Then $u_{n-2}, v_{0} \in S_{0}$. But u_{n-2} and v_{0} are end vertices of a path of length 2 so that S_{0} is not a $P_{3^{-}}$independent set.
So by Cases $1-4$, we obtain $n \equiv 0(\bmod 5)$. Therefore, the proof of Lemma 3.4 is complete.

LEMMA 3.5. For any positive integer $n \geq 5, \chi_{o n c}\left(Q_{n}\right)=5$ if and only if $n \equiv$ $0(\bmod 5)$.

PROOF. Consider an n-antiprism graph Q_{n} as in Fig. 4 such that $n \equiv 0(\bmod 5)$. By Lemma 1.1, $\chi_{o n c}\left(Q_{n}\right) \geq 5$. We recall the set S_{k} defined by (1). By Lemma 3.4, each S_{k} is a P_{3}-independent set which implies that every vertex in any S_{k} can be given the same color in any open neighborhood coloring of G. Thus, the coloring $c: V\left(Q_{n}\right) \rightarrow\{1,2,3,4,5\}$ defined by $c(v)=k+1$ if $v \in S_{k}$ for $0 \leq k \leq 4$ is an open neighborhood 5-coloring of Q_{n} so that $\chi_{o n c}\left(Q_{n}\right)=5$.

We prove the converse by the method of contradiction. Let $\chi_{o n c}\left(Q_{n}\right)=5$. Suppose $n \not \equiv 0(\bmod 5)$. By Observation 3.3, each of the vertices $v_{0}, v_{1}, v_{2}, u_{0}$ and u_{1} should be in different P_{3}-independent sets. Let $S_{0}, S_{1}, S_{2}, S_{3}$ and S_{4} be mutually disjoint P_{3}-independent sets with $v_{0} \in S_{0}, v_{1} \in S_{1}, v_{2} \in S_{2}, u_{0} \in S_{3}$ and $u_{1} \in S_{4}$. Now, v_{3} cannot belong to any of the sets S_{1}, S_{2} or S_{4}. However, it may be in S_{0}, S_{3} or neither. Also, u_{2} cannot belong to any of the sets S_{1}, S_{2}, S_{3} or S_{4}. Based on this, we consider the following Cases $1-3$.

Case 1. Suppose $v_{3} \in S_{0}$. Then u_{2} cannot be in S_{k} for any $0 \leq k \leq 4$ which means that $u_{2} \in S$, a P_{3}-independent set different from the sets $S_{0}, S_{1}, S_{2}, S_{3}$ and S_{4}. Thus, at least six colors are needed to have an open neighborhood coloring of Q_{n}.

Case 2. Suppose $v_{3} \in S_{3}$. Then u_{2} may or may not be in S_{0}.
Subcase 2-1. Assume that $u_{2} \notin S_{0}$. Then, u_{2} is not in any of the sets $S_{k}, 0 \leq$ $k \leq 4$, Thus as in Case 1, at least six colors are needed to have an open neighborhood coloring of Q_{n}.

Subcase 2-2. Assume that $u_{2} \in S_{0}$. Then, we see that $v_{3} \in S_{3}, u_{3} \in S_{1}$ and so on. However, proceeding further in this manner, we get $v \in S_{0}$ with v being one of $v_{n-1}, v_{n-2}, u_{n-1}$ or u_{n-2} according as $n \equiv 1(\bmod 5), n \equiv 2(\bmod 5), n \equiv 3(\bmod 5)$ or $n \equiv 4(\bmod 5)$. In such a case, S_{0} does not remain a P_{3}-independent set. To avoid this, we need to have $v \in S$, a P_{3}-independent set different from $S_{0}, S_{1}, S_{2}, S_{3}$ and S_{4} so that at least six colors are needed to have an open neighborhood coloring of Q_{n}.

Case 3. Suppose $v_{3} \notin S_{0}$ or S_{3}. Then, as in Case 1, at least six colors are needed to have an open neighborhood coloring of Q_{n}.

THEOREM 3.6. Let Q_{n} be an antiprism graph. Then

$$
\chi_{\text {onc }}\left(Q_{n}\right)=\left\{\begin{array}{ll}
5 & \text { if } n \equiv 0(\bmod 5), \\
7 & \text { if } n=7, \\
8 & \text { if } n=4, \\
6 & \text { otherwise. }
\end{array} \quad \text { for } n \geq 3 .\right.
$$

PROOF. We prove the theorem by taking cases for various values of n.
Case 1. Suppose $n=4$. Then we have the 4 -antiprism graph Q_{4} as in Fig. 6. Since each vertex is connected to every other vertex by a path of length 2 , each vertex is to be colored by a different color in any open neighborhood coloring of Q_{4} so that $\chi_{o n c}\left(Q_{4}\right)=8$.

Case 2. Suppose $n \geq 5$ with $n \equiv 0(\bmod 5)$. Then, by Lemma 3.5 , $\chi_{o n c}\left(Q_{n}\right)=5$.
Case 3. Suppose $n=7$, then we have the 7 -antiprism graph Q_{7} as in Fig. 7. As seen from the figure, in any open neighborhood coloring $c, c\left(v_{0}\right) \neq c(w)$ for any w with

Figure 6: 4-antiprism graph Q_{4}

Figure 7: 7-antiprism graph Q_{7}
$w=u_{i}, i=0,1,5,6$ or $w=v_{j}$ with $j=1,2,5,6$. Further, at most one of the vertices $u_{2}, u_{3}, u_{4}, v_{3}, v_{4}$ can be given the same color as that of v_{0}. Thus, in general, not more than two vertices in Q_{7} can be given the same color in any open neighborhood coloring of Q_{7}. This implies that $\chi_{o n c}\left(Q_{7}\right) \geq 7$. To prove the reverse inequality, consider a coloring $c: V\left(Q_{7}\right) \rightarrow\{1,2,3,4,5,6,7\}$ as follows.

$$
c(v)= \begin{cases}1 & \text { if } v=v_{0} \text { or } v=u_{3}, \\ 2 & \text { if } v=v_{1} \text { or } v=u_{4}, \\ 3 & \text { if } v=v_{2} \text { or } v=u_{5}, \\ 4 & \text { if } v=v_{3} \text { or } v=u_{6}, \\ 5 & \text { if } v=v_{4} \text { or } v=u_{0}, \\ 6 & \text { if } v=v_{5} \text { or } v=u_{1}, \\ 7 & \text { otherwise. }\end{cases}
$$

It is easy to verify that c is an open neighborhood 7-coloring of Q_{7} so that $\chi_{o n c}\left(Q_{7}\right) \leq$ 7. Hence, $\chi_{\text {onc }}\left(Q_{7}\right)=7$.

Case 4. Suppose n is any other integer, then we take up two subcases as follows.
Subcase 4-1. Suppose $n=3$, we have the 3 -antiprism graph Q_{3} as in Fig. 2. Since each vertex is connected to every other vertex by a path of length 2 , each vertex is to be colored by a different color in any open neighborhood coloring of Q_{3} so that $\chi_{\text {onc }}\left(Q_{3}\right)=6$.

Subcase 4-2. Suppose $n \geq 8$. Since $n \not \equiv 0(\bmod 5)$, by Observation $3.1, n=$ $3 k+5 m$ for some integers $m \geq 0$ and $k \geq 1$. Also, $\chi_{o n c}\left(Q_{n}\right) \geq 6$ by Lemma 1.1 and Lemma 3.5.

To prove the reverse inequality, consider a coloring $c: V\left(Q_{n}\right) \rightarrow\{1,2,3,4,5,6\}$ as
$c\left(v_{i}\right)= \begin{cases}1, & \text { if } i \equiv 0(\bmod 3) \text { and } 0 \leq i \leq 3 k-1, \text { or } i-3 k \equiv(\bmod 5) \text { and } 0 \leq 3 k \leq 5 m-1 \\ 2, & \text { if } i \equiv 1(\bmod 3) \text { and } 0 \leq i \leq 3 k-1, \text { or } i-3 k \equiv 1(\bmod 5) \text { and } 0 \leq 3 k \leq 5 m-1 \\ 3, & \text { if } i \equiv 2(\bmod 3) \text { and } 0 \leq i \leq 3 k-1, \text { or } i-3 k \equiv 2(\bmod 5) \text { and } 0 \leq 3 k \leq 5 m-1 \\ 4, & \text { if } i-3 k \equiv 3(\bmod 5) \text { and } 0 \leq 3 k \leq 5 m-1 \\ 5, & \text { otherwise. }\end{cases}$
and
$c\left(u_{i}\right)= \begin{cases}1, & \text { if } i-3 k \equiv 2(\bmod 5) \text { and } 0 \leq 3 k \leq 5 m-1 \\ 2, & \text { if } i-3 k \equiv 3(\bmod 5) \text { and } 0 \leq 3 k \leq 5 m-1 \\ 3, & \text { if } i-3 k \equiv 4(\bmod 5) \text { and } 0 \leq 3 k \leq 5 m-1 \\ 4, & \text { if } i \equiv 0(\bmod 3) \text { and } 0 \leq i \leq 3 k-1, \text { or } i-3 k \equiv 0(\bmod 5) \text { and } 0 \leq 3 k \leq 5 m-1 \\ 5, & \text { if } i \equiv 1(\bmod 3) \text { and } 0 \leq i \leq 3 k-1, \text { or } i-3 k \equiv 1(\bmod 5) \text { and } 0 \leq 3 k \leq 5 m-1 \\ 6, & \text { otherwise. }\end{cases}$
It can be easily seen that c is an open neighborhood coloring of Q_{n} so that $\chi_{o n c}\left(Q_{n}\right) \leq 6$. Hence $\chi_{o n c}\left(Q_{n}\right)=6$.

Acknowledgment. The authors are indebted to the learned referees for their valuable suggestions and comments. They are thankful to the Principals, Prof. C. Nanjundaswamy, Dr. Ambedkar Institute of Technology, Prof. Eshwar H. Y., University College of Science, Tumkur University and Prof. S. G. Rakesh, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bangalore for their constant support and encouragement during the preparation of this paper.

References

[1] E. Bertram and P. Horak, Some applications of graph theory to other parts of mathematics, The Mathemtical Intelligencer 21, Issue 3 (1999), 6-11.
[2] G. Chartrand and P. Zhang, Chromatic Graph Theory, Chapman \& Hall/CRC Press(2008).
[3] P. R. Cromwell, Polyhedra, Cambridge University Press, New York(1997).
[4] H. S. M. Coxeter, Introduction to Geometry, 2nd ed., Wiley, New York(1969), 149-150.
[5] K. N. Geetha, K. N. Meera, N. Narahari and B. Sooryanarayana, Open neighborhood coloring of graphs, Int. J. Contemp. Math. Sciences 8, No. 14 (2013), 675-686.
[6] K. N. Geetha, K. N. Meera, N. Narahari and B. Sooryanarayana, Open neighborhood coloring of prisms, J. Math. Fund. Sci. 45, No. 3(2013), 245-262.
[7] F. Harary, Graph theory, Narosa Publishing House, New Delhi(1969).
[8] G. Hartsfield and Ringel, Pearls in Graph Theory, Academic Press, USA(1994).
[9] F. Havet, Graph colouring and applications, Project Mascotte, CNRS/INRIA/UNSA, France(2011).
[10] D. A. Holton J. and Sheehan, The Petersen Graph, Cambridge University Press, Cambridge(1993).
[11] T. R. Jensen and B. Toft, Graph Coloring Problems, John Wiley \& Sons, New York(1995).
[12] F. S. Roberts, From Garbage to Rainbows: Generalizations of Graph Coloring and their Applications. in Graph Theory, Combinatorics, and Applications, Y. Alavi, G. Chartrand, O.R. Oellermann, and A.J. Schwenk (eds.), 2, Wiley, New York(1991), 1031-1052.

[^0]: *Mathematics Subject Classifications: 05C15.
 ${ }^{\dagger}$ Department of Mathematics, University College of Science, Tumkur University, Tumkur, Karnataka 572 103, India
 ${ }^{\ddagger}$ Department of Mathematical and Computational Studies, Dr. Ambedkar Institute of Technology, Bangalore, Karnataka 560056, India
 §Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bangalore, Karnataka, India

