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Abstract

An open neighborhood k-coloring of a simple connected undirected graph
G(V, E) is a k-coloring c : V → {1, 2, · · · , k}, such that, for every w ∈ V and
for all u, v ∈ N(w), c(u) 6= c(v). The minimum value of k for which G admits an
open neighborhood k-coloring is called the open neighborhood chromatic num-
ber of G denoted by χonc(G). In this paper, we obtain the open neighborhood
chromatic number of the Petersen graph. Also, we determine this number for a
family of graphs called antiprism graphs.

1 Introduction

All the graphs considered in this paper are simple, non-trivial, undirected, finite and
connected. For standard terminologies, we refer [2] and [7]. A vertex coloring, or
simply a coloring, of a graph G = (V, E) is an assignment of colors to the vertices of
G. A k-coloring of G is a surjection c : V → {1, 2, · · · , k}. A proper coloring of G
is an assignment of colors to the vertices of G so that adjacent vertices are colored
differently. A proper k-coloring of G is a surjection c : V → {1, 2, · · · , k} such that
c(u) 6= c(v) if u and v are adjacent in G. The minimum k for which there is a proper
k-coloring of G is called the chromatic number of G denoted by χ(G).

As seen in Fig. 3, the Petersen graph [10] is an undirected graph with 10 vertices
and 15 edges and serves as a useful example and counterexample for many problems in
graph theory. It is a cubic symmetric graph and is non-planar. The chromatic number
and the domination number of the Petersen graph are both equal to 3. The generalized
Petersen graph GP (n, k), n ≥ 3 and k < n/2, is a graph consisting of an inner star
polygon {n, k} and an outer regular polygon Cn with corresponding vertices in the
inner and outer polygons connected with edges. The Petersen graph can be obtained
from this graph by choosing n = 5 and k = 2.
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Figure 1: Tetrahedral graph Figure 2: Octahedral graph

The graph obtained by replacing the faces of a polyhedron with its edges and
vertices is called the skeleton [3] of the polyhedron. For example, the polyhedral
graphs corresponding to the skeletons of tetrahedron and octahedron are illustrated in
Fig. 1 and 2.

An n-antiprism [4], n ≥ 3, is a semiregular polyhedron constructed with 2n-gons
and 2n triangles. It is made up of two n-gons on top and bottom, separated by a
ribbon of 2n triangles, with the two n-gons being offset by one ribbon segment. The
graph corresponding to the skeleton of an n-antiprism is called the n-antiprism graph,
denoted by Qn, n ≥ 3 as shown in Fig. 4. As seen from the figure, Qn has 2n vertices
and 4n edges, and is isomorphic to the circulant graph Ci2n(1, 2). In particular, the
3-antiprism graph Q3 is isomorphic to the octahedral graph in Fig. 2.
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Figure 3: Petersen graph
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Figure 4: n-antiprism graph

An open neighborhood coloring [5] of a graph G(V, E) is a coloring c : V → Z+, such
that for each w ∈ V and ∀u, v ∈ N(w), c(u) 6= c(v). An open neighborhood k-coloring

of a graph G(V, E) is a k-coloring c : V → {1, 2, · · · , k} which admits the conditions
of an open neighborhood coloring. The minimum value of k for which G admits an
open neighborhood k-coloring is called the open neighborhood chromatic number of G
denoted by χonc(G).

In [5], we have established some bounds on the open neighborhood chromatic num-
ber of a graph. We have also obtained this parameter for an infinite triangular lattice.
Further, in [6], we have determined the open neighborhood chromatic number of prism
graph which is obtained from the generalized Petersen graph GP (n, k) by choosing
k = 1 and n ≥ 3.
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We recall some of the definitions and results on the open neighborhood chromatic
number discussed in [5].

THEOREM 1.1. If f is an open neighborhood k-coloring of G(V, E) with χonc(G) =
k, then f(u) 6= f(v) holds where u, v are the end vertices of a path of length 2 in G.

THEOREM 1.2. For any graph G(V, E), χonc(G) ≥ ∆(G).

THEOREM 1.3. If H is a connected subgraph of G, then χonc(H) ≤ χonc(G).

THEOREM 1.4. The open neighborhood chromatic number of a connected graph
G is 1 if and only if G ∼= K1 or K2.

THEOREM 1.5. Let G(V, E) be a connected graph on n ≥ 3 vertices. Then
χonc(G) = n if and only if N(u)

⋂

N(v) 6= ∅ holds for every pair of vertices u, v ∈ V (G).

THEOREM 1.6. For a path Pn, n ≥ 2,

χonc(Pn) =

{

1 if n = 2,

2 if n ≥ 3.

THEOREM 1.7. For a cycle Cn, n ≥ 3,

χonc(Cn) =

{

2 if n ≡ 0 (mod 4) ,

3 otherwise.

DEFINITION 1.8. In a graph G, a subset V1 of V (G) such that no two vertices of
V1 are end vertices of a path of length two in G is called a P3-independent set of G.

In this paper, we obtain the open neighborhood chromatic number of the Petersen
graph. Also we determine this number for the n-antiprism graph Qn.

2 Open Neighborhood Chromatic Number of Pe-

tersen Graph

OBSERVATION 2.1. For any graph G of order n, if χonc(G) = n, then diam(G) ≤ 2.

PROOF. Consider a graph G with V (G) = {v1, v2, · · · , vn} with χonc(G) = n.
Suppose diam(G) ≥ 3. Without loss in generality, let d(v1, v2) ≥ 3. We define a
coloring c : V (G) → {1, 2, · · · , n− 1} as follows.

c(vi) =

{

1 if i = 1 or i = 2,

i − 1 otherwise.
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Clearly, c is an open neighborhood (n − 1)-coloring of G so that χonc(G) ≤ n − 1, a
contradiction.

THEOREM 2.2. If G is any graph of order n, χonc(G) = 2 if and only if G ∼= Pn,
n ≥ 3 or G ∼= Cn, n ≡ 0(mod4).

PROOF. Consider a graph G of order n. Suppose χonc(G) = 2. By Theorem 1.2,
we have χonc(G) ≥ ∆(G) so that ∆(G) ≤ 2. Thus, G is either a path or a cycle.
However, by Theorem 1.7, we know that χonc(Cn) = 2 only when n ≡ 0(mod4). Also
by Theorem 1.6, χonc(Pn) = 2 for any n ≥ 3. Thus, if χonc(G) = 2, then G ∼= Pn, n ≥ 3
or G ∼= Cn, n ≡ 0(mod 4). The converse is a direct consequence of Theorem 1.6 and
Theorem 1.7.

THEOREM 2.3. The open neighborhood chromatic number of the Petersen graph
GP (5, 2) is 5.

PROOF. Let u be any vertex of G = GP (n, 2). Then in any open neighborhood
coloring c, c(u) 6= c(v) for any v /∈ N(u) as every such vertex is connected by a path
of length two from u. Further at most one vertex in N(u) can be given the same color
as that of u since there is a path of length two between every v, w ∈ N(u). Thus,
one color can be given to at most two vertices in any open neighborhood coloring
c of G so that χonc(G) ≥ 5. To prove the reverse inequality, consider a coloring
c : V (G) → {1, 2, 3, 4, 5} as

c(v) =







































1, if v = v0 or v = v4,

2, if v = v1 or v = v2,

3, if v = u3 or v = v3,

4, if v = u0 or v = u2,

5, otherwise.

It is easy to verify that c is an open neighborhood 5-coloring of G so that χonc(G) ≤ 5.
Hence, χonc(G) = 5.

3 Open Neighborhood Chromatic Number of an An-

tiprism Graph

In this section, we determine the open neighborhood chromatic number of an n-
antiprism graph Qn.

OBSERVATION 3.1. Every integer n ≥ 8 with n 6≡ 0(mod5) can be expressed as
n = 3k + 5m for some integers m ≥ 0 and k ≥ 1.

LEMMA 3.2. For any integer n ≥ 3, χonc(Qn) ≥ 5.



58 Open Neighborhood Chromatic Number

PROOF. For each n ≥ 3, Qn contains a subgraph H as in Fig. 5. Further, in H ,
there is a path of length two between every pair of vertices so that χonc(H) = 5. Hence
by Theorem 1.3, χonc(Qn) ≥ 5.

Figure 5: A subgraph of Qn

OBSERVATION 3.3. In the antiprism graph Qn, the only vertices that are con-
nected to a vertex ui, 0 ≤ i ≤ n−1 by a path of length two are ui±1, ui±2, vi, vi±1, vi+2

where the suffix is under modulo n. Similarly, the vertices that are connected to a
vertex vi, 0 ≤ i ≤ n − 1 by a path of length two are ui, ui±1, ui−2, vi±1, vi±2 where the
suffix is under modulo n.

LEMMA 3.4. Let Qn be an antiprism graph and let

Sk = {ui, vj| i ≡ (k + 2)(mod5) and j ≡ k(mod5)} for 0 ≤ k ≤ 4. (1)

Then each Sk is a P3- independent set if and only if n ≡ 0(mod5).

PROOF. Let n ≡ 0(mod 5). We see that i ≡ (k + 2)(mod 5). It follows that
i+1 ≡ (k+3)(mod 5), i−1 ≡ (k+1)(mod5), i+2 ≡ (k+4)(mod 5) and i−2 ≡ k(mod5)
so that ui±1, ui±2, vi, vi±1, vi+2 /∈ Sk. Also, j ≡ k(mod 5) implies j+1 ≡ (k+1)(mod 5),
j − 1 ≡ (k + 4)(mod 5), j + 2 ≡ (k + 2)(mod 5) and j − 2 ≡ (k + 3)(mod 5) so that
uj, uj±1, uj−2, vj±1, vj±2 /∈ Sk. Hence, by Observation 3.3, Sk is a P3- independent
set for 0 ≤ k ≤ 4. Next, we assume that Sk is a P3- independent set and we prove the
converse by contraposition.

Case 1. Suppose n ≡ 1(mod5). Then v0, vn−1 ∈ S0. But v0 and vn−1 are end
vertices of a path of length 2 so that S0 is not a P3- independent set.

Case 2. Suppose n ≡ 2(mod5). Then u0, u2 ∈ S0. But u0 and u2 are end vertices
of a path of length 2 so that S0 is not a P3- independent set.

Case 3. Suppose n ≡ 3(mod5). Then un−1, v0 ∈ S0 . But un−1 and v0 are end
vertices of a path of length 2 so that S0 is not a P3- independent set

Case 4. Suppose n ≡ 4(mod5). Then un−2, v0 ∈ S0 . But un−2 and v0 are end
vertices of a path of length 2 so that S0 is not a P3- independent set.
So by Cases 1–4, we obtain n ≡ 0(mod 5). Therefore, the proof of Lemma 3.4 is
complete.

LEMMA 3.5. For any positive integer n ≥ 5, χonc(Qn) = 5 if and only if n ≡
0(mod5).
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PROOF. Consider an n-antiprism graph Qn as in Fig. 4 such that n ≡ 0(mod 5).
By Lemma 1.1, χonc(Qn) ≥ 5. We recall the set Sk defined by (1). By Lemma 3.4,
each Sk is a P3-independent set which implies that every vertex in any Sk can be
given the same color in any open neighborhood coloring of G. Thus, the coloring
c : V (Qn) → {1, 2, 3, 4, 5} defined by c(v) = k + 1 if v ∈ Sk for 0 ≤ k ≤ 4 is an open
neighborhood 5-coloring of Qn so that χonc(Qn) = 5.

We prove the converse by the method of contradiction. Let χonc(Qn) = 5. Suppose
n 6≡ 0(mod5). By Observation 3.3, each of the vertices v0, v1, v2, u0 and u1 should
be in different P3-independent sets. Let S0, S1, S2, S3 and S4 be mutually disjoint
P3-independent sets with v0 ∈ S0 , v1 ∈ S1, v2 ∈ S2, u0 ∈ S3 and u1 ∈ S4. Now, v3

cannot belong to any of the sets S1, S2 or S4. However, it may be in S0, S3 or neither.
Also, u2 cannot belong to any of the sets S1, S2 , S3 or S4. Based on this, we consider
the following Cases 1–3.

Case 1. Suppose v3 ∈ S0. Then u2 cannot be in Sk for any 0 ≤ k ≤ 4 which means
that u2 ∈ S, a P3-independent set different from the sets S0, S1, S2, S3 and S4. Thus,
at least six colors are needed to have an open neighborhood coloring of Qn.

Case 2. Suppose v3 ∈ S3 . Then u2 may or may not be in S0.
Subcase 2-1. Assume that u2 /∈ S0 . Then, u2 is not in any of the sets Sk, 0 ≤

k ≤ 4,. Thus as in Case 1, at least six colors are needed to have an open neighborhood
coloring of Qn.

Subcase 2-2. Assume that u2 ∈ S0. Then, we see that v3 ∈ S3, u3 ∈ S1 and
so on. However, proceeding further in this manner, we get v ∈ S0 with v being one of
vn−1, vn−2, un−1 or un−2 according as n ≡ 1(mod 5), n ≡ 2(mod5), n ≡ 3(mod5) or
n ≡ 4(mod 5). In such a case, S0 does not remain a P3-independent set. To avoid this,
we need to have v ∈ S, a P3-independent set different from S0, S1, S2, S3 and S4 so
that at least six colors are needed to have an open neighborhood coloring of Qn.

Case 3. Suppose v3 /∈ S0 or S3. Then, as in Case 1, at least six colors are needed
to have an open neighborhood coloring of Qn.

THEOREM 3.6. Let Qn be an antiprism graph. Then

χonc(Qn) =



























5 if n ≡ 0(mod 5),

7 if n = 7,

8 if n = 4,

6 otherwise.

for n ≥ 3.

PROOF. We prove the theorem by taking cases for various values of n.
Case 1. Suppose n = 4. Then we have the 4-antiprism graph Q4 as in Fig. 6.

Since each vertex is connected to every other vertex by a path of length 2, each vertex
is to be colored by a different color in any open neighborhood coloring of Q4 so that
χonc(Q4) = 8.

Case 2. Suppose n ≥ 5 with n ≡ 0(mod5). Then, by Lemma 3.5, χonc(Qn) = 5.
Case 3. Suppose n = 7, then we have the 7-antiprism graph Q7 as in Fig. 7. As

seen from the figure, in any open neighborhood coloring c, c(v0) 6= c(w) for any w with
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Figure 6: 4-antiprism graph Q4
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Figure 7: 7-antiprism graph Q7

w = ui, i = 0, 1, 5, 6 or w = vj with j = 1, 2, 5, 6. Further, at most one of the vertices
u2, u3, u4, v3, v4 can be given the same color as that of v0. Thus, in general, not more
than two vertices in Q7 can be given the same color in any open neighborhood coloring
of Q7. This implies that χonc(Q7) ≥ 7. To prove the reverse inequality, consider a
coloring c : V (Q7) → {1, 2, 3, 4, 5, 6, 7} as follows.

c(v) =































































1 if v = v0 or v = u3,

2 if v = v1 or v = u4,

3 if v = v2 or v = u5,

4 if v = v3 or v = u6,

5 if v = v4 or v = u0,

6 if v = v5 or v = u1,

7 otherwise.

It is easy to verify that c is an open neighborhood 7-coloring of Q7 so that χonc(Q7) ≤
7. Hence, χonc(Q7) = 7.

Case 4. Suppose n is any other integer, then we take up two subcases as follows.

Subcase 4-1. Suppose n = 3, we have the 3-antiprism graph Q3 as in Fig. 2.
Since each vertex is connected to every other vertex by a path of length 2, each vertex
is to be colored by a different color in any open neighborhood coloring of Q3 so that
χonc(Q3) = 6.

Subcase 4-2. Suppose n ≥ 8. Since n 6≡ 0(mod 5), by Observation 3.1, n =
3k + 5m for some integers m ≥ 0 and k ≥ 1. Also, χonc(Qn) ≥ 6 by Lemma 1.1 and
Lemma 3.5.
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To prove the reverse inequality, consider a coloring c : V (Qn) → {1, 2, 3, 4, 5, 6} as

c(vi) =







































1, if i ≡ 0(mod3) and 0 ≤ i ≤ 3k − 1, or i − 3k ≡ (mod5) and 0 ≤ 3k ≤ 5m− 1

2, if i ≡ 1(mod3) and 0 ≤ i ≤ 3k − 1, or i − 3k ≡ 1(mod5) and 0 ≤ 3k ≤ 5m− 1

3, if i ≡ 2(mod3) and 0 ≤ i ≤ 3k − 1, or i − 3k ≡ 2(mod5) and 0 ≤ 3k ≤ 5m− 1

4, if i − 3k ≡ 3(mod5) and 0 ≤ 3k ≤ 5m− 1

5, otherwise.

and

c(ui) =



















































1, if i − 3k ≡ 2(mod5) and 0 ≤ 3k ≤ 5m− 1

2, if i − 3k ≡ 3(mod5) and 0 ≤ 3k ≤ 5m− 1

3, if i − 3k ≡ 4(mod5) and 0 ≤ 3k ≤ 5m− 1

4, if i ≡ 0(mod 3) and 0 ≤ i ≤ 3k − 1, or i − 3k ≡ 0(mod 5) and 0 ≤ 3k ≤ 5m − 1

5, if i ≡ 1(mod 3) and 0 ≤ i ≤ 3k − 1, or i − 3k ≡ 1(mod 5) and 0 ≤ 3k ≤ 5m − 1

6, otherwise.

It can be easily seen that c is an open neighborhood coloring of Qn so that χonc(Qn) ≤ 6.
Hence χonc(Qn) = 6.
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