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Abstract

The aim of this paper is to establish some fixed point theorems for mappings
involving rational expressions in a complete partial metric space using a class of
pairs of functions satisfying certain assumptions. Our result extends and gener-
alizes some well known results of [6, 7, 9] in (usual) metric spaces.

1 Introduction

It is well known that, there are lots of literature dealing with fixed points and common
fixed points for Banach contraction principle in different spaces. One of the most
interesting space is Partial metric space introduced by Matthews ([16, 17]) in 1994.
In fact, a partial metric space is a generalization of usual metric spaces in which the
self distance for any point need not be equal to zero. The partial metric space has
wide applications in many branches of mathematics as well as in the field of computer
domain and semantics. After this remarkable contribution, many authors focused on
partial metric spaces and its topological properties (see, e.g. [1-3, 11-17, 22, 24]).
On the other hand, Banach contraction principle has been generalized in various

ways either by using contractive conditions or by imposing some additional conditions
on the ambient spaces. Das and Gupta [4] were the pioneers in proving fixed point
theorems using contractive conditions involving rational expressions. They prove the
following fixed point theorem in the setting of complete metric space.

THEOREM 1 [6]. Let (X, d) be a complete metric space and T : X → X a mapping
such that there exists α, β > 0 with α+ β < 1 satisfying

d(Tx, Ty) ≤ αd(x, y) + β d(y, Ty)[1 + d(x, Tx)]
1 + d(x, y)

, (1)

∗Mathematics Subject Classifications: 47H10, 54H25, 46J10, 46J15.
†Department of Mathematics, J H Government PG College, Betul, India-460001
‡Corresponding author, Department of Mathematics & Statistics, Sultan Qaboos University, P. O.

Box 36, Al-Khoud 123, Muscat, Sultanate of Oman
§Department of Mathematics, NRI Institute of Information Science & Technology, Bhopal, MP,

India-462021
¶Department of Mathematics, The University of Leicester, LEI 7RH, England

147



148 Some Fixed Point Theorems

for all x, y ∈ X. Then T has a unique fixed point.

Recently, one of the most important ingredients of a contractivity condition is to
study the kind of involved functions, like altering distance functions introduced by
Khan et al. [17] as follows.

DEFINITION 1 [17]. An altering distance functions is a continuous, nondecreasing
function φ : [0,∞)→ [0,∞) such that φ(t) = 0 if and only if t = 0.

In [5], Berzig et al. introduced the notion of pair of generalized altering distance
functions as follows.

DEFINITION 2 [5]. The pair (ϕ, φ), where ϕ, φ : [0,∞) → [0,∞), is called a pair
of generalized altering distance functions if the following conditions are satisfied:

(a1) ϕ is continuous;

(a2) ϕ is nondecreasing;

(a3) limn→∞ φ(tn) = 0⇒ limn→∞ tn = 0.

The condition (a3) was introduced by Popescu in [20] and Moradi and Farajzadeh
in [18]. Notice that the above conditions do not determine the values of ϕ(0) and φ(0).

In the recent work, Agarwal et al. [4] introduced the following family of function.

DEFINITION 3 [4]. We will denote by F the family of all pairs (ϕ, φ), where
ϕ, φ : [0,∞)→ [0,∞) are functions satisfying the following three conditions.

(F1) ϕ is nondecreasing;

(F2) if there exists t0 ∈ [0,∞) such that φ(t0) = 0, then t0 = 0 and ϕ−1(0) = {0};

(F3) if {ak}, {bk} ⊂ [0,∞) are sequences such that {ak} → L, {bk} → L and verifying
L < bk and ϕ(bk) ≤ (ϕ− φ)(ak) for all k, then L = 0.

Recently, Karapinar et al. [12] studied the existence and uniqueness of a fixed point
for mappings satisfying rational type contractive condition using auxiliary functions.
The main purpose of this paper is to present some fixed point theorems for contractions
of rational type by using a class of pairs of functions satisfying certain assumptions in
the setting of partial metric spaces.
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2 Preliminaries

The definition of partial metric space is given by Matthews [19, 20] as follows:

DEFINITION 4. Let X be a nonempty set and let p : X ×X → [0,∞) satisfies

(1) x = y ⇔ p(x, x) = p(y, y) = p (x, y) ;

(2) p (x, x) ≤ p (x, y) ;

(3) p (x, y) = p (y, x) ;

(4) p (x, y) ≤ p (x, z) + p (z, y)− p (z, z)

for all x, y, z ∈ X. Then the pair (X, p) is called a partial metric space and p is called
a partial metric on X.

It is clear that if p (x, y) = 0, then x = y. But if x = y then p (x, y) may need not
be zero. Each partial metric p on X generates a T0 topology τp on X which has as a
base the family of open p-balls {Bp (x, ε) : x ∈ X, ε > 0} where

Bp (x, ε) = {y ∈ X : p (x, y) < p (x, x) + ε}

for all x ∈ X and ε > 0. Similarly, closed p-balls is defined as

Bp [x, ε] = {y ∈ X : p (x, y) ≤ p (x, x) + ε} .

If p is a partial metric on X, then the function dp : X ×X → R+ is given by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y), (2)

is a (usual) metric on X.

EXAMPLE 1. Let X = R and p(x, y) = emax{x,y} for all x, y ∈ X. Then (X, p) is
a partial metric space.

DEFINITION 5 [18, 19].

(1) A sequence {xn} in a partial metric space (X, p) converges to x ∈ X, if and only
if p (x, x) = limn→∞ p (x, xn).

(2) A sequence {xn} in a partial metric space (X, p) is called a Cauchy sequence if
and only if limn,m→∞ p (xn, xm) exist and finite.

(3) A partial metric space (X, p) is said to be complete if every Cauchy sequence
{xn} ∈ X converges, with respect to τp, to a point x ∈ X such that p (x, x) =
limn,m→∞ p (xn, xm).

(4) A mapping f : X → X is said to be continuous at x0 ∈ X, if for each ε > 0 ,
there exists δ > 0 such that f (B (x0, δ)) ⊂ B (f (x0) , ε).
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The following lemmas of [12] and [17] will be used in the sequel.

LEMMA 1. The following statements hold.

(1) A sequence {xn} is Cauchy in a partial metric space (X, p) if and only if {xn} is
Cauchy in a metric space (X, dp).

(2) A partial metric space (X, p) is said to be complete if a metric space (X, dp) is
complete, i.e.

lim
n→∞

dp (x, xn) = 0⇔ p (x, x) = lim
n→∞

p (x, xn) = lim
n,m→∞

p (xn, xm) .

LEMMA 2. Let (X, p) be a partial metric space.

(1) If p (x, y) = 0 then x = y.

(2) If x 6= y then p (x, y) > 0.

LEMMA 3. Let xn → z as n→∞ in a partial metric space (X, p), where p (z, z) =
0. Then limn→∞ p (xn, y) = p (z, y) for every y ∈ X.

3 Main Results

We start this section presenting the following class of pairs of functions F . A pair of
functions (ϕ, φ) is said to belong to the class F , if they satisfy the following conditions:

(i) ϕ, φ : [0,∞)→ [0,∞);

(ii) for t, s ∈ [0,∞), if ϕ (t) ≤ φ (s), then t ≤ s;

(iii) for {tn} and {sn} sequences in [0,∞) such that limn→∞ tn = limn→∞ sn = a , if
ϕ (tn) ≤ φ (sn) for any n ∈ N, then a = 0.

Notice that, if a pair ϕ, φ verifies (F1) and (F2), then the pair (ϕ, φ = ϕ − φ)
satisfies (i) and (ii). Furthermore, if (ϕ, φ = ϕ − φ) satisfies (iii), then (ϕ, φ) satisfies
(F3).

EXAMPLE 2. The conditions (i)—(iii) of the above definition are fulfilled for the
functions ϕ, φ : [0,∞)→ [0,∞) defined by

ϕ(t) = ln
1 + 2t

2
and φ(t) = ln

1 + t

2
for all t ∈ [0,∞).

REMARK 1. Note that, if (ϕ, φ) ∈F and ϕ (t) ≤ φ (t), then t = 0. Since we can
take tn = sn = t for any n ∈ N and by condition (iii), we deduce that t = 0.
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Now we present some interesting examples of pairs of functions belonging to the
class F .

EXAMPLE 3. Let ϕ : [0,∞)→ [0,∞) be a continuous and increasing function such
that ϕ (t) = 0 if and only if t = 0 (these functions are known as the altering distance
function in the literature).

Let φ : [0,∞)→ [0,∞) be a non-decreasing function such that φ (t) = 0 if and only
if t = 0 and suppose that φ ≤ ϕ. Then the pair (ϕ,ϕ− φ) ∈F . In fact, it is clear that
(ϕ,ϕ− φ) satisfies condition (i).

Now we will prove condition (ii). For this, let us suppose that t, s ∈ [0,∞) and
ϕ (t) ≤ (ϕ− φ) (s). Then from ϕ (t) ≤ ϕ (s) − φ (s) ≤ ϕ (s) and since ϕ is increasing,
we can deduce that t ≤ s. Finally, to prove (iii), we assume that

ϕ (tn) ≤ ϕ (sn)− φ (sn) , (3)

for any n ∈ N, where tn, sn ∈ [0,∞) and

lim
n→∞

tn = lim
n→∞

sn = a.

Taking limit as n→∞ in (3), we infer that limn→∞ φ (sn) = 0.
Now, let us suppose that a > 0. Since limn→∞ sn = a > 0, we can find ε > 0 and

a sequence {snk} of {sn} such that snk > ε for any k ∈ N. As φ is non-decreasing,
we have φ (snk) > φ (ε) for any k ∈ N and consequently, limk→∞ φ (snk) ≥ φ (ε). This
contradicts the fact that limk→∞ φ (snk) = 0. Therefore, a = 0. This proves that
(ϕ,ϕ− φ) ∈F .
An interesting particular case is, when ϕ is the identity mapping, ϕ = 1[0,∞) and

φ : [0,∞)→ [0,∞) is a non-decreasing function such that φ (t) = 0 if and only if t = 0
and φ (t) ≤ t for any t ∈ [0,∞).

EXAMPLE 4. Let S be the class of functions defined by

S =
{
α : [0,∞)→ [0, 1) : If lim

n→∞
α (tn) = 1⇒ lim

n→∞
tn = 0

}
.

Let us consider the pair of functions
(
1[0,∞), α1[0,∞)

)
, where α ∈ S and α1[0,∞)

is defined by
(
α1[0,∞)

)
(t) = α (t) t for t ∈ [0,∞). Then it is easy to prove that(

1[0,∞), α1[0,∞)
)
∈ F for α ∈ S.

REMARK 2. Suppose that g : [0,∞) → [0,∞) is an increasing function and
(ϕ, φ) ∈F . Then it is easily seen that the pair (g ◦ ϕ, g ◦ φ) ∈F .

Now we are in a position to prove our main results.

THEOREM 2. Let (X, p) be a complete partial metric space and T : X → X a self
map such that there exists a pair of functions (ϕ, φ) ∈ F such that

ϕ (p (Tx, Ty)) ≤ max
{
φ (p (x, y)) , φ

(
p (y, Ty)

1 + p (x, Tx)

1 + p (x, y)

)}
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for all x, y ∈ X . Then T has a unique fixed point.

PROOF. Let x0 ∈ X be arbitrary. We construct a sequence {xn} in X as follows:

xn+1 = Txn for n ≥ 0. (4)

Now applying contractive condition, we have

ϕ(p(xn+1, xn)) = ϕ(p(Txn, Txn−1))

≤ max
{
φ(p(xn, xn−1)), φ

(
p(xn−1, Txn−1)

1 + p(xn, Txn)

1 + p(xn, xn−1)

)}
≤ max

{
φ(p(xn, xn−1)), φ

(
p(xn−1, xn)

1 + p(xn, xn+1)

1 + p(xn, xn−1)

)}
. (5)

Now, let us assume that there exists n0 ∈ N such that p(xn0+1, xn0) = 0. In this case,
xn0+1 = xn0 and consequently, by (4)

Txn0 = xn0+1 = xn0 ,

i.e. xn0 would be the fixed point of T . So we may assume that p(xn+1, xn) 6= 0 for any
n ∈ N. Now we consider two cases.

Case 1. Consider

max

{
φ(p(xn, xn−1)), φ

(
p(xn−1, xn)

1 + p(xn, xn+1)

1 + p(xn, xn−1)

)}
= φ(p(xn, xn−1)). (6)

Then from (5), we have

ϕ(p(xn+1, xn)) ≤ φ(p(xn, xn−1)), (7)

and since (ϕ, φ) ∈ F , we deduce that p(xn+1, xn) ≤ p(xn, xn−1).
Case 2. If

max

{
φ(p(xn, xn−1)), φ

(
p(xn−1, xn)

1 + p(xn, xn+1)

1 + p(xn, xn−1)

)}
= φ

(
p(xn−1, xn)

1 + p(xn, xn+1)

1 + p(xn, xn−1)

)
, (8)

then from (5), we obtain

ϕ(p(xn+1, xn)) ≤ φ
(
p(xn−1, xn)

1 + p(xn, xn+1)

1 + p(xn, xn−1)

)
(9)

and since (ϕ, φ) ∈ F , we deduce that

p(xn+1, xn) ≤ p(xn−1, xn)
1 + p(xn, xn+1)

1 + p(xn, xn−1
,

which implies that p(xn+1, xn) ≤ p(xn, xn−1).
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Therefore, from both the cases we conclude that {p(xn+1, xn)} is a decreasing se-
quence of non-negative real numbers.
Put r = limn→∞ p(xn+1, xn), where r ≥ 0, and denote

A = {n ∈ N : n satisfies (6)} and B = {n ∈ N : n satisfies (8)}.

Now, we make the following remark.
(1). If CardA = ∞, then from (5), we can find infinitely many natural numbers

satisfying (7) and since limn→∞ p(xn+1, xn) = limn→∞ p(xn, xn−1) = r and (ϕ, φ) ∈ F ,
we deduce that r = 0.

(2). If CardB = ∞, then from (5), we can find infinitely many natural numbers
satisfying (9) and since (ϕ, φ) ∈ F , and using the same argument one used in Case 2,
we obtain

p(xn+1, xn) ≤ p(xn−1, xn)
1 + p(xn, xn+1)

1 + p(xn, xn−1
.

Taking limit as n→∞ in the last inequality and taking into account that

lim
n→∞

p(xn+1, xn) = r,

one can deduce that r = 0.
Therefore,

lim
n→∞

p(xn+1, xn) = 0. (10)

Due to inequality (2), we have

dp(xn+1, xn) ≤ 2p(xn+1, xn),

therefore,
lim
n→∞

dp(xn+1, xn) = 0. (11)

Now, we prove that {xn} is a Cauchy sequence in X, i.e. we prove that

lim
n,m→∞

p(xn, xm) = 0.

In the contrary case, since limn→∞ p(xn+1, xn) = 0, we can find ε > 0 and subsequences
{xm(k)} and {xn(k)} of {xn} such that n(k) is the smallest index for which

n(k) > m(k) > k, p(xn(k), xm(k)) ≥ ε. (12)

This means that
p(xn(k)−1, xm(k)) ≤ ε. (13)

From (12) and (13), we have

ε ≤ p(xn(k), xm(k)) ≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k))− p(xn(k)−1, xn(k)−1)
≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k)) < ε+ p(xn(k), xn(k)−1).
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Taking the limit as k →∞ and using (10), we get

lim
k→∞

p(xn(k), xm(k)) = ε. (14)

By the triangular inequality, we have

p(xn(k), xm(k)) ≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k))− p(xn(k)−1, xn(k)−1)
≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k))

≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k)−1) + p(xm(k)−1, xm(k))

−p(xm(k)−1, xm(k)−1)
≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k)−1) + p(xm(k)−1, xm(k))

and

P (xn(k)−1, xm(k)−1) ≤ p(xn(k)−1, xn(k)) + p(xn(k), xm(k)−1)− p(xn(k), xn(k))
≤ p(xn(k)−1, xn(k)) + p(xn(k), xm(k)−1)

≤ p(xn(k)−1, xn(k)) + p(xn(k), xm(k))− p(xm(k), xm(k)−1)
−p(xm(k), xm(k))

≤ p(xn(k)−1, xn(k)) + p(xn(k), xm(k))− p(xm(k), xm(k)−1).

Taking the limit as k → ∞ in the above two inequalities and using (10) and (14), we
get

lim
n→∞

p(xn(k)−1, xm(k)−1) = ε. (15)

Now applying the contractive condition, we have

ϕ(p(xm(k), xn(k))) = ϕ(p(Txm(k)−1, Txn(k)−1))

≤ max
{
φ(p(xm(k)−1, xn(k)−1)),

φ
(
p(xn(k)−1, Txn(k)−1)

1 + p(xm(k)−1, Txm(k)−1)

1 + p(xm(k)−1, xn(k)−1)

)}
= max

{
φ(p(xm(k)−1, xn(k)−1)),

φ
(
p(xn(k)−1, xn(k))

1 + p(xm(k)−1, xm(k))

1 + p(xm(k)−1, xn(k)−1)

)}
for k ∈ N. (16)

Let us put

C = {k ∈ N : ϕ(p(xm(k), xn(k))) ≤ φ(p(xm(k)−1, xn(k)−1))},

D =

{
k ∈ N : ϕ(p(xm(k), xn(k))) ≤ φ

(
p(xn(k)−1, xn(k))

1 + p(xm(k)−1, xm(k))

1 + p(xm(k)−1, xn(k)−1)

)}
.

By (16), we have CardC =∞ or CardD =∞.
Let us suppose that CardC = ∞. Then there exists infinitely many k ∈ N such

that
ϕ(p(xm(k), xn(k))) ≤ φ(p(xm(k)−1, xn(k)−1)),
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and since (ϕ, φ) ∈ F , we get

p(xm(k), xn(k)) ≤ p(xm(k)−1, xn(k)−1).

Taking the limit as k →∞ in the above inequality, we get ε = 0 a contradiction.
Let us suppose that CardD = ∞. In this case, we can find infinitely many k ∈ N

such that

ϕ(p(xm(k), xn(k))) ≤ φ
(
p(xn(k)−1, xn(k))

1 + p(xm(k)−1, xm(k))

1 + p(xm(k)−1, xn(k)−1)

)
,

and since (ϕ, φ) ∈ F , we infer

p(xm(k), xn(k)) ≤ p(xn(k)−1, xn(k))
1 + p(xm(k)−1, xm(k))

1 + p(xm(k)−1, xn(k)−1)
.

Taking limit as k → ∞ and in view of (10) and (15), it follows that ε ≤ 0 and we get
a contradiction.
Therefore, in both possibilities, we obtain a contradiction and so we have

lim
n,m→∞

p(xn, xm) = 0.

Since limn,m→∞ p(xn, xm) exists and finite, we conclude that {xn} is a Cauchy sequence
in (X, p). Due to inequality (2), we have dp(xn, xm) ≤ 2p(xn, xm). Therefore

lim
n,m→∞

dp(xn, xm) = 0.

Thus, by Lemma 1, {xn} is a Cauchy sequence in (X, dp) and (X, p). Since (X, p) is a
complete partial metric space, there exists x ∈ X such that limn→∞ p(xn, x) = p(x, x).
Since limn,m→∞ p(xn, xm) = 0, then again by Lemma 1, we have p(x, x) = 0.
Next, we will prove that x is a fixed point of T . Suppose that Tx 6= x. Now

applying contractive condition and Lemma 3, we have

ϕ(p(Tx, Txn)) ≤ max
{
φ(p(x, xn)), φ

(
p(xn, Txn)

1 + p(x, Tx)

1 + p(x, xn)

)}
.

We can distinguish two cases again.
Case 1. There exist infinitely many n ∈ N such that

ϕ(p(Tx, Txn)) ≤ φ(p(x, xn)).

Since (ϕ, φ) ∈ F , we obtain

p(Tx, Txn) ≤ p(x, xn).

Letting n→∞, we get
lim
n→∞

Txn = Tx, (17)
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where to simplify our consideration, we will denote the subsequence by the same symbol
{Txn}. By (4)

Tx = lim
n→∞

Txn = lim
n→∞

xn+1. (18)

Since xn → x in X, this means that lim sup p(xn, x)→ 0 and consequently,

lim
n→∞

xn+1 = x.

From this last result and (18), we deduce that Tx = x, which means that x is a fixed
point of T .
Case 2 There exist infinitely many n ∈ N such that

ϕ(p(Tx, Txn)) ≤ φ
(
p(xn, Txn)

1 + p(x, Tx)

1 + p(x, xn)

)
.

To simplify our consideration, we will denote the subsequence by the same symbol
{Txn}. Since (ϕ, φ) ∈ F and Txn = xn+1, we have

p(Tx, Txn) ≤ p(xn, Txn)
1 + p(x, Tx)

1 + p(x, xn)
for any n ∈ N.

Taking the limit as n→∞ and by (11), limn→∞ p(xn, xn+1) = 0, we infer (17). From
the above Case 1, we deduce that x is a fixed point of T .
Therefore, in both the cases we have shown that x is a fixed point of T .
Finally, we will prove the uniqueness of the fixed point. Suppose that y is another

fixed point of T such that x 6= y. Now using contractive condition, we get

ϕ(p(x, y)) = ϕ(p(Tx, Ty))

≤ max
{
φ(p(x, y)), φ

(
p(y, Ty)

1 + p(x, Tx)

1 + p(x, y)

)}
≤ max{φ(p(x, y)), φ(0)}. (19)

Now there are two cases.
Case 1. Consider max{φ(p(x, y)), φ(0)} = φ(p(x, y)). In this case, from (19)

ϕ(p(x, y)) ≤ φ(p(x, y)).

Since (ϕ, φ) ∈ F and by Remark 1, we deduce that p(x, y) = 0, that is, x = y.
Case 2. Consider max{φ(p(x, y)), φ(0)} = φ(0). Then from (19), we obtain

ϕ(p(x, y)) ≤ φ(0).

Since (ϕ, φ) ∈ F , we infer that p(x, y) ≤ 0. Therefore, p(x, y) = 0, that is, x = y.
Hence in both the cases x = y, that is, the fixed point is unique. This completes

the proof of the Theorem 2.

From Theorem 2, we obtain the following corollaries.
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COROLLARY 1. Let (X, p) be a complete partial metric space and T : X → X be
a self map such that there exists a pair of functions (ϕ, φ) ∈ F satisfying

ϕ(p(Tx, Ty)) ≤ φ(p(x, y)),

for all x, y ∈ X. Then T has a unique fixed point in X.

COROLLARY 2. Let (X, p) be a complete partial metric space and T : X → X a
self map such that there exists a pair of functions (ϕ, φ) ∈ F satisfying

ϕ(p(Tx, Ty)) ≤ φ
(
p(y, Ty)

1 + p(x, Tx)

1 + p(x, y)

)
,

for all x, y ∈ X. Then T has a unique fixed point in X.

REMARK 3. Notice that the contractive condition appearing in Theorem 1,

d(Tx, Ty) ≤ αd(x, y) + β d(y, Ty)[1 + d(x, Tx)]
1 + d(x, y)

,

for all x, y ∈ X, where α, β > 0 with α+ β < 1, implies that

d(Tx, Ty) ≤ (α+ β)max
{
d(x, y),

d(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)

}
≤ max

{
(α+ β)d(x, y), (α+ β)

d(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)

}
for all x, y ∈ X.

This condition is a particular case of the contractive condition appearing in Theorem
2 with the pair of functions (ϕ, φ) ∈ F given by ϕ = 1[0,∞) and φ = (α + β)1[0,∞).
Therefore, Theorem 1 is a particular case of the following corollary and considered as
an extension and generalizations of Theorem 1 in the setting of complete partial metric
spaces.

COROLLARY 3. Let (X, p) be a complete partial metric space and T : X → X be
a self map such that there exists a pair of functions (ϕ, φ) ∈ F satisfying

d(Tx, Ty) ≤ max
{
(α+ β)d(x, y), (α+ β)

d(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)

}
for all x, y ∈ X. Then T has a unique fixed point in X.

Taking into account Example 3, we have the following corollary.

COROLLARY 4. Let (X, p) be a complete partial metric space and T : X → X be
a self map such that there exists two functions ϕ, φ : [0,∞)→ [0,∞) such that

ϕ(p(Tx, Ty)) ≤ max
{
ϕ(p(x, y))− φ(p(x, y)),

ϕ

(
p(y, Ty)

1 + p(x, Tx)

1 + p(x, y)

)
− φ

(
p(y, Ty)

1 + p(x, Tx)

1 + p(x, y)

)}
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for any x, y ∈ X, where ϕ is a continuous and increasing function satisfying ϕ(t) = 0
if and only if t = 0 and φ is a nondecreasing function such that φ(t) = 0 if and only if
t = 0 and φ ≤ ϕ. Then T has a unique fixed point in X.

Corollary 4 has the following consequences.

COROLLARY 5. Let (X, p) be a complete partial metric space and T : X → X be
a self map such that there exists two functions ϕ, φ : [0,∞)→ [0,∞) such that

ϕ(p(Tx, Ty)) ≤ ϕ(p(x, y))− φ(p(x, y))

for any x, y ∈ X, where ϕ is an increasing function and φ is a nondecreasing function
and they satisfy ϕ(t) = φ(t) = 0 if and only if t = 0 and ϕ is continuous with φ ≤ ϕ.
Then T has a unique fixed point in X.

Corollary 5 can be considered as an extension of the following result about fixed
point theorems which appears in [7] in the setting of complete partial metric space.

THEOREM 3. Let (X, d) be a complete metric space and T : X → X a mapping
satisfying

ϕ(d(Tx, Ty)) ≤ ϕ(d(x, y))− φ(d(x, y))

for any x, y ∈ X, where ϕ and φ satisfy the same conditions as in Corollary 5. Then T
has a unique fixed point.

COROLLARY 6. Let (X, p) be a complete partial metric space and T : X → X
be a self map such that there exists two functions ϕ, φ : [0,∞)→ [0,∞) satisfying the
same conditions as in Corollary 5 such that

ϕ(p(Tx, Ty)) ≤ ϕ
(
p(y, Ty)

1 + p(x, Tx)

1 + p(x, y)

)
− φ

(
p(y, Ty)

1 + p(x, Tx)

1 + p(x, y)

)
for any x, y ∈ X. Then T has a unique fixed point.

Taking into account Example 4, we have the following corollary.

COROLLARY 7. Let (X, p) be a complete partial metric space and T : X → X be
a self map such that there exist α ∈ S (see Example 4) satisfying

p(Tx, Ty) ≤ max
{
α(p(x, y))p(x, y),

α
(
p(y, Ty)

1 + p(x, Tx)

1 + p(x, y)

)(
p(y, Ty)

1 + p(x, Tx)

1 + p(x, y)

)}
for any x, y ∈ X. Then T has a unique fixed point.

Corollary 7 has the following consequence.
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COROLLARY 8. Let (X, p) be a complete partial metric space and T : X → X be
a self map such that there exist α ∈ S (see Example 4) satisfying

p(Tx, Ty) ≤ α(p(x, y))p(x, y)

for any x, y ∈ X. Then T has a unique fixed point.

Corollary 8 can be considered as an extension of the following result about fixed
point theorems which appears in [9] in the setting of complete partial metric spaces.

THEOREM 4. Let (X, d) be a complete metric space and T : X → X a mapping
satisfying

d(Tx, Ty) ≤ α(d(x, y))d(x, y)
for any x, y ∈ X, where α ∈ S (see Example 4). Then T has a unique fixed point.

4 Example

In this section, we give an example in support of our main result.

EXAMPLE 5. Let X = [0, 1] and p(x, y) = max{x, y}, then (X, p) is a partial
metric space. Suppose T : X → X such that Tx = x

2 for all x ∈ X. Define the function
ϕ, φ : [0,∞)→ [0,∞) as follows:

ϕ(x) = ln

(
1

12
+
5x

12

)
and φ(x) = ln

(
1

12
+
3x

12

)
for all x ∈ [0,∞).

Without loss of generality, assume that x ≥ y. Then we have

ϕ(p(Tx, Ty)) = ln

(
1

12
+
5

12
p(Tx, Ty)

)
= ln

(
1

12
+
5

12
max{x, y}

)
= ln

(
1

12
+
1

12
x

)
.

On the other hand,

φ(p(x, y)) = ln

(
1

12
+
3

12
p(x, y)

)
= ln

(
1

12
+
3

12
max{x, y}

)
= ln

( 1
12
+
3

12
x
)

and

φ
(
p(y, Ty)

1 + p(x, Tx)

1 + p(x, y)

)
= ln

( 1
12
+
3

12

(
p(y, Ty)

1 + p(x, Tx)

1 + p(x, y)

))
= ln

( 1
12
+
3

12

(
y
1 + x

1 + x

))
= ln

( 1
12
+
3

12
y
)
.
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Therefore,

max
{
φ(p(x, y)), φ

(
p(y, Ty)

1 + p(x, Tx)

1 + p(x, y)

)}
= max

{
ln
( 1
12
+
3

12
x
)
, ln
( 1
12
+
3

12
y
)}

= ln
( 1
12
+
3

12
x
)
.

Combining the observations above, we get

ϕ(p(Tx, Ty)) = ln
( 1
12
+
1

12
x
)
≤ ln

( 1
12
+
3

12
x
)

= max
{
φ(p(x, y)), φ

(
p(y, Ty)

1 + p(x, Tx)

1 + p(x, y)

)}
.

Thus all the conditions of Theorem 2 are satisfied. Hence T has a unique fixed point,
indeed x = 0 is the required fixed point.
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