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Abstract

In this paper we introduce an essential class of real sequences named as
(p, q; r)-convex sequences. Employing this class we generalize two different re-
sults proved previously by others.

1 Introduction

Let (an)∞n=1 be a real sequence and let the difference of order k of the sequence (an)
∞
n=1

be defined by

40an = an, 4kan = 4k−1an+1 −4k−1an, n = 1, 2, . . . ,

and throughout the paper we shall write 4an instead of 41an.
Next definition introduces the well-known notion of a convex sequence of order k,

(k = 1, 2, . . . ).

DEFINITION 1. A sequence (an)∞n=1 is said to be convex of order k if 4kan ≥ 0
for all n. In particular, a convex sequence of order k = 2 is said to be convex.

In 1965 N. Ozeki [1] (see also [2], page 202) has proved the following theorem,
relevant to convex sequences.

THEOREM 1. Let (an)∞n=1 be a real sequence and let the sequences be defined by

An =
1

n

n∑
k=1

ak, Bn = 42An, (n = 1, 2, . . . ). (1)

If the sequence (an)∞n=1 is convex, then:

(i) Bn ≥ n−1
n+2Bn−1 for n = 2, 3, . . . ,

(ii) Sequence (An)∞n=1 is convex, i.e. 42(An) ≥ 0 for all n = 1, 2, . . . .
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A natural question was raised whether assertion (ii) of THEOREM 1 could be
extended to the convex sequences of order k ≥ 3. A correct and elegant answer of this
question was given in [3] as below.

THEOREM 2. Let (an)∞n=1 be a positive sequence. Then the k-th order convexity
of the sequence (an)∞n=1, implies the k-th order convexity the sequence (An)

∞
n=1, where

An is defined by (1).

Various generalizations of convexity were studied by many authors. In [4] a sequence
(an)

∞
n=1 is said to be p-convex for a positive real number p if Lp(an) ≥ 0 for all

n = 1, 2, . . . , where the difference operator Lp is defined by

Lp(an) = an+2 − (1 + p)an+1 + pan.

Another generalization uses the operator

Lp,q(an) = an − (p+ q)an+1 + pqan+2,

where
Lp(an) = an − pan+1 and Lp,q(an) = Lp(an)− qLp(an+1)

with p, q ∈ R, 0 < p < 1, 0 < q < 1, see [5]. In the same paper are given the following
definitions:

DEFINITION 2. A sequence (an)∞n=1 is called p−monotone if Lp(an) ≥ 0 for every
n. A sequence (an)∞n=1 is called (p, q)−convex sequence if Lp,q(an) ≥ 0 for every n.

The application of (p, q)−convex sequences has led to the proving a generalized
statement which in particular case when p → 1 and q → 1 implied a well-known
inequality having an important application in Fourier analysis (see REMARK 7 at the
end of the paper).

THEOREM 3 ([5]). Let 0 < p < 1, 0 < q < 1, p 6= q and (an)∞n=1 be a bounded
(p, q)−convex sequence. Then (an)∞n=1 is p-monotone. In addition, if Lp,q(an) ≥ 0 and
0 ≤ an ≤ 1, then we have

0 ≤ Lp,q(an) ≤ n
(

n∑
k=1

pk − qk
p− q

)−1
.

Let (an)∞n=1 be an arbitrary real sequence. For a natural number r we define the
difference operators Lp;r with

Lp;r(an) = an − pran+r, (n = 1, 2, . . . ),

and
Lp,q;r(an) = Lp;r(an)− qrLp;r(an+r), (n = 1, 2, . . . ),

where p, q ∈ R.
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It is easy to verify the following properties of the operator Lp,q;r:

Lp,q;r(Can) = CLp,q;r(an), C − is a constant

and
Lp,q;r(an + bn) = Lp,q;r(an) + Lp,q;r(bn).

Now we introduce the concepts of (p; r)−monotonicity and (p, q; r)−convexity of an
arbitrary real sequence.

DEFINITION 3. A sequence (an)∞n=1 is called (p; r)−monotone if Lp;r(an) ≥ 0 for
every n and r. A sequence (an)∞n=1 is called (p, q; r)−convex sequence if Lp,q;r(an) ≥ 0
for every n and r.

Note that in particular case, the class of (1, 1; r)-convex sequences is a wider class
than the class of ordinary convex sequences as shows next example.

EXAMPLE 1. Let (an)∞n=1 be an real sequence given by

an =

{
(−1)n, for n odd
0, for n even.

Then 42an = 4 · (−1)n which means that for all n the sequence (an)∞n=1 is not convex.
On the other hand L1,1;r(an) = 2 · (−1)n[1− (−1)r], from which we conclude that the
sequence (an)∞n=1 is (1, 1; r)-convex for all numbers n and for an arbitrary even number
r.

We shall generalize THEOREM 2 using (1, 1; 2)−convexity instead of the ordinary
second order convexity and THEOREM 3 using (p, q; r)−convexity, in general form,
instead of (p, q)−convexity which are the main aims of this paper.

2 Main Results

Firstly we prove the following:

THEOREM 4. Let (an)∞n=1 be a real sequence and let the sequences (An)
∞
n=1 be

defined by

An =
1

n

n∑
k=1

ak, (n = 1, 2, . . . ).

If the sequence (an)∞n=1 is (1, 1; 2)-convex, then the sequence (An)
∞
n=1 is (1, 1; 2)-convex

as well.

PROOF. Let (an)∞n=1 be a (1, 1; 2)-convex sequence. Then we have to prove that

a1 + a2 + · · ·+ an + an+2 + an+3 + an+4
n+ 4

−2 · a1 + a2 + · · ·+ an + an+1 + an+2
n+ 2

+
a1 + a2 + · · ·+ an

n
≥ 0,
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holds for all n = 1, 2, . . . .
Multiplying the above inequalities by n(n+ 2)(n+ 4) we obtain

n(n+ 2)(a1 + a2 + · · ·+ an + an+2 + an+3 + an+4)
−2n(n+ 4)(a1 + a2 + · · ·+ an + an+1 + an+2)

+(n+ 2)(n+ 4)(a1 + a2 + · · ·+ an) ≥ 0,

for all n = 1, 2, . . . .
Now canceling similar terms, in the above inequalities, we obtain the equivalent

inequalities

8(a1 + a2 + · · ·+ an)− n(n+ 6)(an+1 + an+2) + n(n+ 2)(an+3 + an+4) ≥ 0 (2)

for all n = 1, 2, . . . .
Subsequently, it is enough to prove (2). Let the sequence (an)∞n=1 be (1, 1; 2)-convex

and n = 2k − 1, k ∈ N. Then adding the inequalities

2 · 4 · (a1 − 2a3 + a5) ≥ 0,
4 · 6 · (a3 − 2a5 + a7) ≥ 0,
6 · 8 · (a5 − 2a7 + a9) ≥ 0,

...

(2k − 4)(2k − 2)(a2k−5 − 2a2k−3 + a2k−1) ≥ 0,
(2k − 4)2k(a2k−3 − 2a2k−1 + a2k+1) ≥ 0,
2k(2k + 2)(a2k−1 − 2a2k+1 + a2k+3) ≥ 0,

we obtain

8(a1 + a3 + · · ·+ a2k−1)− (4k2 + 12k)a2k+1 + (4k2 + 4k)a2k+3 ≥ 0. (3)

Now let n = 2k, k ∈ N, be an even number. Similarly, adding the inequalities

2 · 4 · (a2 − 2a4 + a6) ≥ 0,
4 · 6 · (a4 − 2a6 + a8) ≥ 0,
6 · 8 · (a6 − 2a8 + a10) ≥ 0,

...

(2k − 4)(2k − 2)(a2k−4 − 2a2k−2 + a2k) ≥ 0,
(2k − 4)2k(a2k−2 − 2a2k + a2k+2) ≥ 0,
2k(2k + 2)(a2k − 2a2k+2 + a2k+4) ≥ 0,

we obtain

8(a2 + a4 + · · ·+ a2k)− (4k2 + 12k)a2k+2 + (4k2 + 4k)a2k+4 ≥ 0. (4)

Finally, adding inequalities (3) and (4) we immediately obtain (2). The proof is com-
pleted.
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THEOREM 5. Let 0 < p < 1, 0 < q < 1, p 6= q, r ∈ N, and let (an)∞n=1 be a
bounded (p, q; r)−convex sequence. Then (an)∞n=1 is (p; r)-monotone. In addition, if
Lp,q;r(an) ≥ 0 and 0 ≤ an ≤ 1, then we have

0 ≤ Lp,q;r(anr) ≤ n

 n∑
j=1

pjr − qjr
pr − qr

−1 .
PROOF. Assume that Lp,q;r(an) ≥ 0 for all n. Then from Lp;r(an) ≥ qrLp;r(an+r)

and every k > n, k = n+ r, n+ 2r, n+ 3r, . . . , n+mr, . . . , (m = 1, 2, . . . ), we get

Lp;r(ak) ≤ qn−kLp;r(an).

Hence, for m = 1, 2, . . . , and assumptions of the theorem we obtain

1− (p/q)mr

1− (p/q)r Lp;r(an) =
∑

i=n,n+r,...,n+(m−1)r

(p/q)
i−n

Lp;r(an)

≥
∑

i=n,n+r,...,n+(m−1)r

(p/q)
i−n

qi−nLp;r(ai)

= an − pmran+mr ≥ −pmr,

i.e.
1− (p/q)mr

1− (p/q)r Lp;r(an) + p
mr ≥ 0.

Since last inequality holds true for all mr > 0, then it clearly implies Lp;r(an) ≥ 0 for
all n ∈ N.
Now the boundedness of the sequence (an)∞n=1 implies

n =

n∑
j=1

1 ≥
n∑
j=1

ajr

=

n∑
j=1

1− pjr
1− pr Lp;r(ajr) + p

ra(n+1)r
1− pnr
1− pr

≥ Lp;r(anr)

n∑
j=1

1− pjr
1− pr q

(n−j)r

= Lp;r(anr)
[
q(n−1)r + (1 + pr)q(n−2)r + (1 + pr + p2r)q(n−3)r

+ · · ·+ (1 + pr + p2r + · · ·+ p(n−1)r)
]

= Lp;r(anr)
{[
q(n−1)r + prq(n−2)r + p2rq(n−3)r + · · ·+ p(n−1)r]

+
[
q(n−2)r + (1 + pr)q(n−3)r + · · ·+ (1 + pr + p2r + · · ·+ p(n−2)r)

]}
≥ Lp;r(anr)

[
q(n−1)r + prq(n−2)r + p2rq(n−3)r + · · ·+ p(n−1)r

]
= Lp;r(anr)

n∑
j=1

pjr − qjr
pr − qr .
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The proof is completed.

REMARK 6. If we take r = 1 in THEOREM 5, then THEOREM 3 is an immediate
results of it.

REMARK 7. If we take r = 1 and let p → 1, q → 1 in THEOREM 5, then we
obtain

0 ≤ 4(an) ≤
2

n+ 1
, (n = 1, 2, . . . ).

In fact, this is a well-known result that was appeared in [7]: If (an)∞n=1 is bounded,
say 0 ≤ an ≤ 1 and convex, then 4(an)∞n=1 is also bounded. This result, as we have
mentioned in the first section of this paper, has an important application in Fourier
analysis and its extends (as we have done) surly would be important in applications to
this field.

In [6], any real sequence (an)∞n=1 has been defined the following differences

Lpq(an) = an+2 − (p+ q)an+1 + pqan, n = 1, 2, . . . ,

and it is said that the sequence (an)∞n=1 is p, q-convex if

Lpq(an) ≥ 0, n = 1, 2, . . . ,

and this definition differs from the definition given in [5]. Here we generalize the class
of p, q-convex sequences in the following way: For any real sequence (an)∞n=1 we define
the following differences

Lp,q;r(an) = an+2r − (pr + qr)an+r + prqran, n, r = 1, 2, . . . .

We say that the sequence (an)∞n=1 is p, q; r-convex if Lp,q;r(an) ≥ 0, n, r = 1, 2, . . . .
Of what we said so far for p, q; r-convex sequences we are in able to prove the

following result which plays an important role for the future investigations.

LEMMA 8. Let r ∈ {1, 2, . . . }. Then the sequence

wn =

{
pn−qn
p−q if p 6= q
npn−1 if p = q

satisfies the relation Lp,q;r(wn) = 0, n ∈ {1, 2, . . . }.

PROOF. The proof follows by direct calculations.

Taking the value r = 1 to the LEMMA 8, we obtain Lemma 1 proved previously
by others, see [6] page 2.

THEOREM 9. Let (an)∞n=1 be a p, q; r-convex sequence of real numbers, the integer
m ≥ 2, and r ∈ {1, 2, . . . }. If for the terms ar and a2r of the sequence (an)∞n=1 holds

a2r
wm+r

≥ ar
wm

, (5)
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then the sequence
(

an+2r
wm+n+r

)∞
n=1

is monotone non-decreasing for all n ∈ {1, 2, . . . }.

PROOF. Let (an)∞n=1 be a p, q; r-convex sequence of real numbers, the integer m ≥
2, and r ∈ {1, 2, . . . }. Then by the assumptions we have

[an+2r − (pr + qr)an+r + (pq)ran]
wm+n
(pq)m+n

≥ 0,

[an+r − (pr + qr)an + (pq)ran−r]
wm+n−r
(pq)m+n−r

≥ 0,

[an − (pr + qr)an−r + (pq)ran−2r]
wm+n−2r
(pq)m+n−2r

≥ 0,

...

[a5r − (pr + qr)a4r + (pq)ra3r]
wm+3r
(pq)m+3r

≥ 0,

[a4r − (pr + qr)a3r + (pq)ra2r]
wm+2r
(pq)m+2r

≥ 0,

[a3r − (pr + qr)a2r + (pq)rar]
wm+r
(pq)m+r

≥ 0.

Adding the above inequalities we obtain

an+2rwm+n − an+rwm+n+r
(pq)m+n

+
arwm+r − a2rwm

(pq)m
≥ 0.

Thus, from this inequality and (5) we clearly obtain the assertion of the theorem.

OPEN PROBLEM 10. If the sequence (an)∞n=1 is (p, q; r)-convex, then the sequence
(An)

∞
n=1 is (p, q; r)-convex as well for r ∈ {3, 4, . . . }.
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