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Abstract

In this article, the relative growth of an E-valued meromorphic function and
its derivative is studied and we obtain the bound for T (r,f ′)

T (r,f)
for an E-valued

meromorphic function of finite order. We also extend the related results of S.
K. Singh and H. S. Gopalakrishna [4] to E-valued meromorphic function. Our
results are significant and much stronger than the result obtained by Z. Wu and
Y. Chen [5].

1 Introduction

In 1982, H. J. W. Ziegler [6] successively extended the classical Nevanlinna theory of
meromorphic functions to vector valued meromorphic functions in finite dimensional
spaces. Later in 1996, C. G. Hu and C. C. Yang [3] established the Nevanlinna’s theory
in an infinite dimensional Hilbert space. C. G. Hu [2] assumed, E is an infinite dimen-
sional Banach space with a Schauder basis {ej}, j = 1, 2, . . . and was able to present
the statement of first and second fundamental theorem of Nevanlinna and Nevanlinna’s
deficiency relation in E. In 2006, C. G. Hu and Q. J. Hu [1] successively proved the
generalized Poisson-Jensen-Nevanlinna formula, first and second fundamental theorem
of Nevanlinna for E-valued meromorphic functions.

2 Basic Notions of Nevanlinna Theory in Infinite Di-
mensional Banach Space

Assume that E is a infinite dimensional complex Banach space with a Schauder ba-
sis {ej}∞j=1 and C is a complex plane. Let D = Cr = {z : |z| < r}. An E-valued
meromorphic function f(z) in a domain D ⊂ C can be written as

f(z) =

∞∑
j=1

fj(z)ej = (f1(z), f2(z), . . . , fj(z), . . .) ,
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138 E-valued Meromorphic Function and Its Derivative

where each fj(z) is a complex-valued meromorphic functions in D. We now introduce
the generalized quantities of the Nevanlinna theory (see [1]): For any a ∈ E ∪ {∞},
n(r, a, f) = n(r, a) denotes the number of a-points of f in |z| ≤ r, counted with multi-
plicities and n(r,∞, f) = n(r, f) denote the number of poles of f in |z| ≤ r. Then we
have the counting function of finite or infinite a-points as

N(r, a) ≡ N(r, a, f) = n(0, a) log r +

∫ r

0

n(t, a)− n(0, a)

t
dt,

N(r, f) ≡ N(r,∞, f) = n(0, f) log r +

∫ r

0

n(t, f)− n(0, f)

t
dt,

m(r, f) ≡ m(r,∞, f) =
1

2π

∫ 2π

0

log+
∥∥f(reiφ)

∥∥ dφ,
m(r, a) ≡ m(r, a, f) =

1

2π

∫ 2π

0

log+
1

‖f(reiφ)− a‖dφ, (a 6=∞),

and
T (r, f) = m(r, f) +N(r, f),

where log+ x = max {log x, 0}. The volume function associated with E-valued mero-
morphic function f is given by

V (r, a, f) =
1

2π

∫
Cr

log

∣∣∣∣rξ
∣∣∣∣∆ log ‖f(ξ)− a‖ dσ ∧ dτ, a ∈ E

and the curvature function is given by

V (r, 0, f ′) = G(r, f) =

∫ r

0

dt

2πt

∫
Ct

∆ log ‖f ′(ξ)‖ dσ ∧ dτ.

The order ρ of an E-valued meromorphic function f is defined by

ρ = lim sup
r→∞

log T (r, f)

log r

and the lower order λ of f is defined by

λ = lim inf
r→∞

log T (r, f)

log r
.

We now define the following deficiencies as in [2]: For any a ∈ E ∪ {∞}, the number

δ(a) = δ(a, f) = lim inf
r→+∞

m(r, a)

T (r, f)
= 1− lim sup

r→+∞

V (r, a) +N(r, a)

T (r, f)

is called the deficiency of the point a, a point a with δ(a) > 0 is called deficient.
The quantity

θ(a) = θ(a, f) = lim inf
r→+∞

N(r, a)−N(r, a)

T (r, f)
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is called the index of multiplicity of a, and

Θ(a) = Θ(a, f) = lim inf
r→+∞

m(r, a) +N(r, a)−N(r, a)

T (r, f)

= 1− lim sup
r→+∞

V (r, a) +N(r, a)

T (r, f)
.

In particular, we have

δ(∞) = lim inf
r→+∞

m(r, f)

T (r, f)
= 1− lim sup

r→+∞

N(r, f)

T (r, f)
since V (r,∞) = 0,

θ(∞) = lim inf
r→+∞

N(r, f)−N(r, f)

T (r, f)
,

Θ(∞) = 1− lim sup
r→+∞

N(r, f)

T (r, f)
.

The quantity

δG = δG(f) = lim inf
r→+∞

G(r, f)

T (r, f)

is called the Ricci Index of f(z).
The function f is called admissible if S(rγ)

T (rγ ,f)
→ 0 for a sequence rγ → +∞.

THEOREM 1 ([1]). (E-valued Nevanlinna’s first fundamental theorem) Let f(z)
be an E-valued meromorphic mapping in CR. Then for 0 < r < R, a ∈ E, f(z) 6= a,

T (r, f) = V (r, a) +N(r, a) +m(r, a) + log ‖cq(a)‖+ ε(r, a).

Here ε(r, a) is a function such that |ε(r, a)| ≤ log+ ‖a‖+log 2, ε(r, 0) ≡ 0, and cq(a) ∈ E
is the co-effi cient of the first term in the Laurent series at the point a.

THEOREM 2 ([1]). (E-valued Nevanlinna’s second fundamental theorem) Let f(z)
be a non-constant E-valued meromorphic mapping of compact projection in CR and
a[k] ∈ E ∪ {∞} (k = 1, 2, . . . , q) be q ≥ 3 distinct finite or infinite points. Then

q∑
k=1

m
(
r, a[k]

)
+G(r, f) ≤ T (r, f)−N1(r) + S(r),

where N1(r) = N(r, 0, f ′) + 2N(r, f)−N(r, f ′) and

G(r, f) =

∫ r

0

dt

2πt

∫
Ct

∆ log ‖f ′(ξ)‖ dσ ∧ dτ.

If R = +∞, then S(r) satisfies S(r) = O {log T (r, f)} + O(log r) as r → +∞ without
exception if f(z) has finite order and otherwise as r → +∞ outside a set J of exceptional
intervals of finite measure

∫
J
dr < +∞. If 0 < R < +∞, then

S(r) = O
{

log+ T (r, f)
}

+O

{
log

1

R− r

}
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holds as r → R without exception if f has finite order

ρ = lim sup
r→R

log T (r, f)

log(1/R− r) ,

and otherwise as r → R outside of a set J exceptional intervals such that
∫
J
d 1
R−r <

+∞. In all cases, the exceptional set J is independent of the choice of the finite points
a[k] ∈ E and of their number.

THEOREM 3 ([2]). (E-valued Nevanlinna deficiency relation) Let f(z) be an E-
valued meromorphic function and admissible with the property of compact projection.
Then the set {a ∈ E ∪ {∞} : Θ(a) > 0} is at most countable and summing over all such
points ∑

a

[δ(a) + θ(a)] + δG ≤
∑
a

Θ(a) + δG ≤ 2.

THEOREM 4 (Lemma 3.1(A) of [1]) Let f(z) be an E-valued meromorphic function
with the property of compact projection, and let

S1(r) =
1

2π

∫ 2π

0

log+
∥∥f ′(reiφ)

∥∥
‖f(reiφ)‖ dφ+

1

2π

∫ 2π

0

log+
[
F (reiφ)

∥∥f(reiφ)
∥∥] dφ

+p log+
2p

δ
− log ‖c′l′‖ .

Then

G(r) +

p+1∑
k=1

m(r, a[k]) +N1(r) ≤ 2T (r, f) + S1(r),

where N1(r) = N(r, 0, f ′) + 2N(r, f)−N(r, f ′) is the generalized counting function of
multiple points, a[ν] = (a

[ν]
1 , . . . , a

[ν]
j , . . .)(p ≥ 2) ∈ E are distinct finite points, and

F (z) =

p∑
ν=1

1∥∥f(z)− a[ν]
∥∥ .

3 Main Results

S. K. Singh and H. S. Gopalkrishna [4] proved the following result:

THEOREM 5. If f is a non-constant meromorphic function of order ρ then

lim inf
r→∞

T (r, f ′)

T (r, f)
≥
∑
a∈C

Θ(a, f)

where r →∞ without restriction if ρ is finite and r →∞ outside an exceptional set of
finite measure if ρ = +∞.
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In [5], Z. Wu and Y. Chen proved the following result.

THEOREM 6. Let f(z) be an admissible E-valued meromorphic function of com-
pact projection in C of finite order and assume

∑
a δ(a) = 2. Then

lim
r→+∞

T (r, f ′)

T (r, f)
= 2− δ(∞).

Now in this article, we obtain a THEOREM 5 for E-valued meromorphic function
f(z) in modified form and also extend the related results of S. K. Singh and H. S.
Gopalakrishna [4]. THEOREM 6 is also proved as a consequence of our main result.
We prove the following main results.

THEOREM 7. Let f(z) be an admissible and non-constant E-valued meromorphic
function of finite order ρ with compact projection then∑

a∈E
Θ(a, f) + δG ≤ lim inf

r→+∞

T (r, f ′)

T (r, f)
,

where r → +∞ without restriction if ρ is finite and r → +∞ outside an exceptional
set of finite measure if ρ = +∞.

To prove THEOREM 7, we first prove the following Lemma, which plays an promi-
nent role in the proof of the THEOREM 7.

LEMMA 1. Let f(z) be a non-constant E-valued meromorphic function with the
property of compact projection in Cr and

a[γ] =
(
a
[γ]
1 , a

[γ]
2 , . . . , a

[γ]
j , . . .

)
(p ≥ 2) ∈ E

are finite or infinite distinct points then

p∑
µ=1

m(r, a[µ], f) +N

(
r,

1

f ′

)
+G(r, f) ≤ T (r, f ′) + S(r, f),

where

S(r, f) =
1

2π

∫ 2π

0

log+
{
F (reiφ)

∥∥f ′iφ)
∥∥} dφ− log

∥∥c′p∥∥+ p log+
2p

δ

and

F (z) =

p∑
ν=1

1∥∥f(z)− a[ν]
∥∥ .

PROOF. Following the proof of Lemma 3.1(A) in [1], we obtain the required result.
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PROOF OF THEOREM 7. Let
{
a[µ]
}
, µ = 1, 2, . . . ,∞ be an infinite sequence of

distinct elements of E, which includes every a ∈ E for which Θ(a, f) > 0. Then

∞∑
µ=1

Θ
(
a[µ], f

)
=
∑
a∈E

Θ(a, f). (1)

We have
p∑

µ=1

m(r, a[µ], f) +G(r, f) ≤ T (r, f ′)−N
(
r,

1

f ′

)
+ S(r, f).

Adding
∑p
µ=1N

(
r, a[µ], f

)
to both sides, we obtain

p∑
µ=1

T (r, a[µ], f) +G(r, f) ≤ T (r, f ′) +

p∑
µ=1

N
(
r, a[µ], f

)
−N

(
r,

1

f ′

)
+ S(r, f)

= T (r, f ′) +

p∑
µ=1

N
(
r, a[µ], f

)
−N0

(
r,

1

f ′

)
+ S(r, f),

where N0
(
r, 1f ′

)
is formed with the zeros of f ′ which are not zeros of any of f − a[µ]

(µ = 1, 2, . . . , p). Since N0
(
r, 1f ′

)
≥ 0, we have

p∑
µ=1

T (r, a[µ], f) ≤ T (r, f ′) +

p∑
µ=1

N
(
r, a[µ], f

)
−G(r, f) + S(r, f).

By an E-valued Nevanlinna’s first fundamental theorem, we have

T (r, a, f) = T (r, f)− V (r, a, f) +O(1).

Using this in the above equation, we obtain

p∑
µ=1

[
T (r, f)− V (r, a[µ], f) +O(1)

]
≤ T (r, f ′) +

p∑
µ=1

N
(
r, a[µ], f

)
−G(r, f) + S(r, f).

We further obtain

pT (r, f) ≤ T (r, f ′) +

p∑
µ=1

[
N
(
r, a[µ], f

)
+ V (r, a[µ], f)

]
−G(r, f) + S(r, f).

Then

p ≤ lim inf
r→+∞

T (r, f ′)

T (r, f)
+

p∑
µ=1

lim sup
r→+∞

N
(
r, a[µ], f

)
+ V (r, a[µ], f)

T (r, f)
− lim inf

r→+∞

G(r, f)

T (r, f)

+ lim sup
r→+∞

S(r, f)

T (r, f)
.
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It follows that

p ≤ lim inf
r→+∞

T (r, f ′)

T (r, f)
+

p∑
µ=1

[
1−Θ(a[µ], f)

]
− δG(f).

So
p∑

µ=1

Θ(a[µ], f) + δG(f) ≤ lim inf
r→+∞

T (r, f ′)

T (r, f)
.

Letting p→∞ and using (1), we get∑
a∈E

Θ(a, f) + δG(f) ≤ lim inf
r→+∞

T (r, f ′)

T (r, f)
. (2)

COROLLARY 1. Let f(z) be a admissible E-valued meromorphic function of finite
order ρ with the property of compact projection such that∑

a∈E

Θ(a, f) + δG = 2, E = E ∪ {∞} .

Then

(i)

lim
r→+∞

T (r, f ′)

T (r, f)
= 2−Θ(∞, f).

(ii)

1−Θ(a, f) + δG ≤ lim inf
r→+∞

V (r, a) +N(r, a)

T (r, f)
≤ lim sup

r→+∞

V (r, a) +N(r, a)

T (r, f)

= 1−Θ(a, f).

PROOF. Given that ∑
a∈E

Θ(a, f) + δG = 2,

we have ∑
a∈E

Θ(a, f) + Θ(∞, f) + δG = 2.

It follows that ∑
a∈E

Θ(a, f) + δG = 2−Θ(∞, f).

Using (2), we write

lim inf
r→+∞

T (r, f ′)

T (r, f)
≥
∑
a∈E

Θ(a, f) + δG = 2−Θ(∞, f).
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On the other hand, we know that

T (r, f ′) = m(r, f ′) +N(r, f ′) = m(r,
f ′

f
) +m(r, f) +N(r, f ′)

≤ T (r, f) +N(r, f) + S(r, f)

and

lim sup
r→+∞

T (r, f ′)

T (r, f)
≤ 1 + lim sup

r→+∞

N(r, f)

T (r, f)
.

So

lim sup
r→+∞

T (r, f ′)

T (r, f)
≤ 2−Θ(∞, f).

Thus

lim
r→+∞

T (r, f ′)

T (r, f)
= 2−Θ(∞, f).

(ii) Let a ∈ E ∪ {∞} and
{
a[k]
}
, k = 1, 2, . . .∞ be an infinite sequence of distinct

elements of E∪{∞} which includes every b ∈ E∪{∞} such that b 6= a and Θ(b, f) 6= 0.
Then

∞∑
k=1

Θ
(
a[k], f

)
=

∑
b∈E,b6=a

Θ(b, f) = 2−Θ(a, f). (3)

By E-valued Nevanlinna’s second fundamental theorem, we have

(q − 2)T (r, f) +G(r, f) ≤
q−1∑
k=1

[
V (r, a[k], f) +N(r, a[k], f)

]
+
[
V (r, a, f) +N(r, a, f)

]
+ S(r, f),

(q − 2)T (r, f) ≤
q−1∑
k=1

[
V (r, a[k], f) +N(r, a[k], f)

]
+
[
V (r, a, f) +N(r, a, f)

]
−G(r, f) + S(r, f),

(q − 2)T (r, f) ≤
q−1∑
k=1

[
V (r, a[k], f) +N(r, a[k], f)

]
T (r, f)

+

[
V (r, a, f) +N(r, a, f)

]
T (r, f)

−G(r, f)

T (r, f)
+
S(r, f)

T (r, f)
,

(q − 2) ≤
q−1∑
k=1

lim sup
r→+∞

[
V (r, a[k], f) +N(r, a[k], f)

]
T (r, f)

+ lim inf
r→+∞

[
V (r, a, f) +N(r, a, f)

]
T (r, f)

− lim inf
r→+∞

G(r, f)

T (r, f)
+ lim sup

r→+∞

S(r, f)

T (r, f)
,
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(q − 2) ≤ lim inf
r→+∞

[
V (r, a, f) +N(r, a, f)

]
T (r, f)

+

q−1∑
k=1

[1−Θ
(
a[k], f

)
]− δG,

(q − 2) + δG ≤ lim inf
r→+∞

[
V (r, a, f) +N(r, a, f)

]
T (r, f)

+ (q − 1)−
q−1∑
k=1

Θ
(
a[k], f

)
,

δG − 1 ≤ lim inf
r→+∞

[
V (r, a, f) +N(r, a, f)

]
T (r, f)

−
q−1∑
k=1

Θ
(
a[k], f

)
.

So

lim inf
r→+∞

[
V (r, a, f) +N(r, a, f)

]
T (r, f)

≥
q−1∑
k=1

Θ
(
a[k], f

)
+ δG − 1.

Let q →∞ and using (3), we get

lim inf
r→+∞

[
V (r, a, f) +N(r, a, f)

]
T (r, f)

≥
∞∑
k=1

Θ
(
a[k], f

)
+ δG − 1

= 2−Θ(a, f) + δG − 1 = 1−Θ(a, f) + δG.

On the other hand, by the definition of Θ(a, f), we have

lim sup
r→+∞

[
V (r, a, f) +N(r, a, f)

]
T (r, f)

= 1−Θ(a, f).

Thus

1−Θ(a, f) + δG ≤ lim inf
r→+∞

[
V (r, a, f) +N(r, a, f)

]
T (r, f)

≤ lim sup
r→+∞

[
V (r, a, f) +N(r, a, f)

]
T (r, f)

= 1−Θ(a, f).

COROLLARY 2 Let f(z) be a admissible E-valued meromorphic function of finite
order ρ with the property of compact projection such that∑

a∈E

δ(a, f) + δG = 2.

Then

lim
r→+∞

T (r, f ′)

T (r, f)
= 2− δ(∞, f).

PROOF. We know that δ(a, f) ≤ Θ(a, f), ∀a ∈ E ∪ {∞} = E and∑
δ(a, f) + δG ≤

∑
Θ(a, f) + δG ≤ 2.



146 E-valued Meromorphic Function and Its Derivative

Given
∑
δ(a, f) + δG = 2. Then

∑
Θ(a, f) + δG = 2. We observe that∑

δ(a, f) + δG =
∑

Θ(a, f) + δG = 2.

Then ∑
a∈E

δ(a, f) =
∑
a∈E

Θ(a, f).

So
δ(a, f) = Θ(a, f) ∀a ∈ E.

By using Corollary 1(i), we have

lim
r→+∞

T (r, f ′)

T (r, f)
= 2−Θ(∞, f) = 2− δ(∞, f).

So

lim
r→+∞

T (r, f ′)

T (r, f)
= 2− δ(∞, f)

References

[1] C. G., Hu and Q. J., Hu, The Nevanlinna’s theorem for a class, Complex Var.
Elliptic Equ., 51(2006), 777—791.

[2] C. G., Hu, Nevanlinna’s theory in a Banach Space, Proceedings of the Fifth Inter-
national Colloquium on Complex Analysis(1997), 109—115.

[3] C. G., Hu and C. C., Yang, Some remarks on Nevanlinna’s theory in a Hilbert
space, Bulletin of the Hong-Kong Mathematical Society(1997), 267—272.

[4] S. K., Singh and H. S., Gopalakrishna, Exceptional values of entire and meromor-
phic functions, Math. Ann., 191(1971), 121—142.

[5] Z., Wu and Y., Chen, E-valued Meromorphic functions with maximal deficiency,
Applied Mathematics E-Notes, 13(2013), 141—147.

[6] H. J. W., Ziegler, Vector Valued Nevanlinna Theory. Research Notes in Mathemat-
ics, 73. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982.


