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Abstract

In this paper, we investigate some mapping properties of two new subclasses of
analytic function classes Rk(ρ, b) and Vk(ρ, b) under generalized integral operator.
Several (known or new) consequences of the results are also pointed out.

1 Introduction

Let A denote the family of all functions of the form:

f(z) = z +

∞∑
j=2

ajz
j (1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} and satisfying the
normalization conditions f(0) = 0 and f ′(0) = 1. A function f ∈ A is said to be
starlike of complex order b (b ∈ C \ {0}) and type δ (0 ≤ δ < 1), denoted by S∗δ (b) (see
[6] ) if and only if

<
{

1 +
1

b

(
zf ′(z)

f(z)
− 1

)}
> δ (z ∈ U). (2)

A function f ∈ A is said to be convex of complex order b (b ∈ C \ {0}) and type
δ (0 ≤ δ < 1), denoted by Cδ(b) (see [6] ) if and only if

<
{

1 +
1

b

zf ′′(z)

f ′(z)

}
> δ (z ∈ U). (3)

For b = 1, S∗δ (1) = S∗(δ) and Cδ(1) = C(δ), the classes of functions that are starlike of
order δ and convex of order δ in U , respectively. Clearly,

C(δ) ⊂ S∗(δ) (0 ≤ δ < 1).
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Notice that S∗0 (b) = S∗(b) and C0(b) = C(b), the classes considered earlier by Nasr and
Aouf [8] and Wiatrowski [13].
Let Pk(ρ) denote the class of functions p : U −→ C, analytic in U satisfying the

properties p(0) = 1 and ∫ 2π

0

∣∣∣∣<(p(z))− ρ
1− ρ

∣∣∣∣ dθ ≤ kπ, (4)

where z = reiθ ∈ U , k ≥ 2 and 0 ≤ ρ < 1. For ρ = 0, we obtain the class Pk defined
and studied in [12]. For ρ = 0, k = 2, we obtain the well known class P of functions
with positive real part and the class k = 2 gives us the class P (ρ) of functions with
positive real part greater than ρ. For k > 2, the functions in Pk may not have positive
real part. It is easy to see that p ∈ Pk(ρ) if and only if there exists h ∈ Pk such that

p(z) = (1− ρ)h(z) + ρ.

Also, from (4), we note that p ∈ Pk(ρ) if and only if there exists p1, p2 ∈ Pk(ρ) such
that

p(z) =

(
k

4
+

1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z).

It is well-known that the class Pk(ρ) is a convex set (see [9]).

DEFINITION. 1 A function f ∈ A is said to be in the class Rk(ρ, b) (b ∈ C \ {0})
if and only if

1 +
1

b

(
zf ′(z)

f(z)
− 1

)
∈ Pk(ρ) (k ≥ 2, 0 ≤ ρ < 1). (5)

Notice thatRk(0, 1) = Rk, which is the class of functions with bounded radius rotation.

DEFINITION. 2 A function f ∈ A is said to be in the class Vk(ρ, b) (b ∈ C \ {0})
if and only if

1 +
1

b

(
zf ′′(z)

f ′(z)

)
∈ Pk(ρ) (k ≥ 2, 0 ≤ ρ < 1). (6)

We note that Vk(0, 1) ≡ Vk, the class of functions with bounded boundary rotation
first discussed by Paatero [2]. It is clear that

f(z) ∈ Vk(ρ, b)⇐⇒ zf ′(z) ∈ Rk(ρ, b). (7)

Recently, Frasin [7] introduced the following generalized integral operators:
Let αi, βi ∈ C for all i = 1, 2, 3, ..., n, n ∈ N, γ ∈ C with <(γ) > 0. Let

Iαi,βiγ : An −→ A be the integral operator defined by

Iαi,βiγ (f1, f2, ..., fn)(z)

=

{∫ z

0

γtγ−1 (f ′1(t))
α1

(
f1(t)

t

)β1
...... (f ′n(t))

αn

(
fn(t)

t

)βn
dt

} 1
γ

, (8)

where the power is taken as the principal one.
Notice that, the integral operator Iαi,βiγ (f1, f2, ..., fn)(z) generalizes several previ-

ously studied operators as follows:
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• For αi = 0 for all i = 1, 2, 3, ..., n, the integral operator

I0,βiγ (f1, f2, ..., fn)(z) = Iγ(f1, f2, ..., fn)(z),

where

Iγ(f1, f2, ..., fn)(z) =

{∫ z

0

γtγ−1
(
f1(t)

t

)β1
.......

(
fn(t)

t

)βn
dt

} 1
γ

(9)

is introduced and studied by Breaz and Breaz [3].

• For αi = 0 for all i = 1, 2, 3, ..., n and γ = 1, the integral operator

I0,βi1 (f1, f2, ...., fn)(z) = Fn(z),

where

Fn(z) =

∫ z

0

(
f1(t)

t

)β1
.......

(
fn(t)

t

)βn
dt (10)

is introduced and studied by Breaz and Breaz [3].

• For βi = 0 for all i = 1, 2, 3, ..., n and γ = 1, the integral operator

Iαi,01 (f1, f2, ..., fn)(z) = Fα1,α2,...,αn(z),

where

Fα1,α2,...,αn(z) =

∫ z

0

(f ′1(t))
α1 ..... (f ′n(t))

αn dt (11)

is introduced and studied by Breaz et al. [5].

Recently, Breaz and Güney [4] considered the integral operators

Fn(z) and Fα1,α2,....,αn(z)

and obtained their properties on the classes S∗δ (b) and Cδ(b) of starlike and convex
functions of complex order b and type δ. Later on Noor et al. [10] considered the same
integral operators and investigated the mapping properties for the classes Vk(ρ, b) and
Rk(ρ, b).
Motivated by the aforementioned work, in this paper, the author investigates some

mapping properties of the classes Rk(ρ, b) and Vk(ρ, b) under generalized integral oper-
ator defined in (8) when γ = 1. The results obtain in this paper are generalized results
of Breaz and Güney [4] and Noor et al. [10].

2 Main Results

We recall the following lemma which is useful for our investigation:
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LEMMA 1 (see [11]). Let f(z) ∈ Vk(α), 0 ≤ α < 1. Then f(z) ∈ Rk(β) where

β =
1

4

[
(2α− 1) +

√
4α2 − 4α+ 9

]
. (12)

In this section we prove the following:

THEOREM 1. Let fi, φi ∈ Rk(ρ, b) for all i = 1, 2, 3, ..., n with 0 ≤ ρ < 1,
b ∈ C \ {0} and αi, βi ∈ R+ for 1 ≤ i ≤ n. If

0 ≤ (ρ− 1)n+ (ρ− 1)

n∑
i=1

βi + 1 < 1, (13)

then the integral operator

Iαi, βi1 (f1, f2, ...., fn)(z) =

∫ z

0

Πn
i=1 (f ′i(t))

αi

(
fi(t)

t

)βi
dt (14)

belong to the class Vk(χ, b) with

χ = 1 + (ρ− 1)n+ (ρ− 1)

n∑
i=1

βi. (15)

PROOF. For the sake of simplicity, in the proof, we shall write H(z) instead of
Iαi, βi1 (f1, f2, ...., fn)(z). Differentiating (14) with respect to z, we obtain

H′(z) = Πn
i=1 (f ′i(z))

αi

(
fi(z)

z

)βi
. (16)

Let us define
φi(z) = z(f ′i(z))

αi . (17)

Clearly, φi(z) ∈ A. Equation (16) becomes

H′(z) = Πn
i=1

φi(z)

zn

(
fi(z)

z

)βi
. (18)

Logarithmic differentiation of (18) yields

H′′(z)
H′(z) =

n∑
i=1

[
βi

(
f ′i(z)

fi(z)
− 1

z

)
+

(
φ′i(z)

φ(z)
− 1

z

)]
. (19)

Multiplying (19) by z and simplifying we get

1 +
1

b

zH′′(z)
H′(z) = 1− n−

n∑
i=1

βi +

n∑
i=1

{
βi

[
1 +

1

b

(
zf ′i(z)

fi(z)
− 1

)]
+1 +

1

b

(
zφ′i(z)

φi(z)
− 1

)}
. (20)
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Adding and subtracting ρ on the right hand side of (20) gives[(
1 +

1

b

zH′′(z)
H′(z)

)
− χ

]
=

n∑
i=1

βi

[(
1 +

1

b

(
zf ′i(z)

fi(z)
− 1

))
− ρ
]

+

n∑
i=1

[(
1 +

1

b

(
zφ′i(z)

φi(z)
− 1

))
− ρ
]
, (21)

where χ is given by (15). Taking real part of (21) and after simplification, we get∫ 2π

0

∣∣∣∣< [(1 +
1

b

zH′′(z)
H′(z)

)
− χ

]∣∣∣∣ dθ
≤

n∑
i=1

βi

∫ 2π

0

∣∣∣∣< [(1 +
1

b

(
zf ′i(z)

fi(z)
− 1

))
− ρ
]∣∣∣∣ dθ

+

n∑
i=1

∫ 2π

0

∣∣∣∣< [(1 +
1

b

(
zφ′i(z)

φi(z)
− 1

))
− ρ
]∣∣∣∣ dθ. (22)

Since, by hypothesis, fi, φi ∈ Rk(ρ, b) for 1 ≤ i ≤ n, we have∫ 2π

0

∣∣∣∣< [(1 +
1

b

(
zf ′i(z)

fi(z)
− 1

))
− ρ
]∣∣∣∣ dθ ≤ (1− ρ)kπ (23)

and ∫ 2π

0

∣∣∣∣< [(1 +
1

b

(
zφ′i(z)

φi(z)
− 1

))
− ρ
]∣∣∣∣ dθ ≤ (1− ρ)kπ. (24)

Making use of (23) and (24) in (22), we have∫ 2π

0

∣∣∣∣< [(1 +
1

b

zH′′(z)
H′(z)

)
− χ

]∣∣∣∣ dθ ≤ (1− χ)kπ, (25)

where χ is given by (15). Hence H(z) ∈ Vk(χ, b). Thus, the proof of Theorem 1 is
completed.

Put αi = 0 for all i = 1, 2, 3, ..., n in Theorem 1. Notice that, in such case H(z) =
Fn(z) and φi(z) = z which shows

zφ′i(z)

φi(z)
− 1 = 0.

Therefore, from (21), it follows that[
1 +

1

b

zF ′′n(z)

F ′n(z)
− λ
]

=

n∑
i=1

βi

[(
1 +

1

b

(
zf ′i(z)

fi(z)
− 1

))
− ρ
]
,

where λ = 1 + (ρ− 1)
∑n
i=1 βi.
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Hence we have the following Corollary 1.

COROLLARY 1 (cf. [10, Theorem 2.1]). Let fi(z) ∈ Rk(ρ, b) for 1 ≤ i < n with
0 ≤ ρ < 1 and b ∈ C \ {0}. Also let βi > 0, 1 ≤ i ≤ n. If

0 ≤ (ρ− 1)

n∑
i=1

βi + 1 < 1,

then Fn(z) ∈ Vk(λ, b) with λ = (ρ− 1)
∑n
i=1 βi + 1.

Next, we take βi = 0, 1 ≤ i ≤ n in Theorem 1. In this case,

H(z) = Fα1,α2,....,αn(z) =

∫ z

0

Πn
i=1 (f ′i(z))

αi ,

which implies H′(z) = Πn
i=1

φi(z)
zn . Therefore,

zH′′(z)
H′(z) =

n∑
i=1

(
zφ′i(z)

φi(z)
− 1

)
=

n∑
i=1

αi
zf ′′i (z)

f ′i(z)
.

We have the following result due to Noor et al. [10].

COROLLARY 2 (cf. [10, Theorem 2.5]). Let fi(z) ∈ Vk(ρ, b) for 1 ≤ i ≤ n with
0 ≤ ρ < 1 and b ∈ C \ {0}. Also, let αi > 0, 1 ≤ i ≤ n. If

0 ≤ (ρ− 1)

n∑
i=1

αi + 1 < 1,

then Fα1,α2,...,αn(z) ∈ Vk(λ1, b) with λ1 = (ρ− 1)
∑n
i=1 αi + 1.

REMARK 1. Setting k = 2 in Corollary 1, we obtain the results of [4, Theorem 1]
and [10, Corollary 2.2].

REMARK 2. Setting k = 2 in Corollary 2, we obtain another results of [4, Theorem
3] and [10, Corollary 2.6].

THEOREM 2. Let fi, φi ∈ Vk(ρ, 1) for 1 ≤ i < n with 0 ≤ ρ < 1. Let αi, βi ∈ R+,
1 ≤ i ≤ n. If

0 ≤ (β − 1)

n∑
i=1

(1 + βi) + 1 < 1, (26)

then H(z) ∈ Vk(l, 1) with l = 1 + (β − 1)
∑n
i=1(1 + βi) and β is given by (12).

PROOF: Proceeding as Theorem 1 with b = 1, we have∫ 2π

0

∣∣∣∣< [1 +
zH′′(z)
H′(z) − l

]∣∣∣∣ dθ
≤

n∑
i=1

βi

∫ 2π

0

∣∣∣∣< [zf ′i(z)f ′i(z)
− β

]∣∣∣∣ dθ +

n∑
i=1

∫ 2π

0

∣∣∣∣< [zφ′i(z)φ′i(z)
− β

]∣∣∣∣ dθ. (27)
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Since fi, φi ∈ Vk(ρ, l) for 1 ≤ i ≤ n, and by using Lemma 1, we have
n∑
i=1

∫ 2π

0

∣∣∣∣< [zf ′i(z)f ′i(z)
− β

]∣∣∣∣ dθ ≤ (1− β)kπ (28)

and
n∑
i=1

∫ 2π

0

∣∣∣∣< [zφ′i(z)φ′i(z)
− β

]∣∣∣∣ dθ ≤ (1− β)kπ, (29)

where β is given by (12) with α = ρ. Using (28) and (29) in (27), we obtain∫ 2π

0

∣∣∣∣< [1 +
zH′′(z)
H′(z) − l

]∣∣∣∣ dθ ≤ (1− l)kπ. (30)

Thus, H(z) ∈ Vk(l, 1) with l = 1 + (β − 1)
∑n
i=1(1 + βi). The proof of Theorem 2 is

completed.

REMARK 3. For αi = 0 we obtain the result of ([10, Theorem 2.3]).

For n = 1, α1 = 0, β1 = 1, f1 = f in Theorem 2, we get the following results due
to [10].

COROLLARY 3.[10] Let f(z) ∈ Vk(ρ, 1). Then the Alexander operator I(z) =∫ z
0
f(t)
t dt (see [1]) belongs to the class Vk(β), where β is given by (24).

REMARK 4. For ρ = 0 and k = 2 in the above Corollary 2, we have the well known
result f(z) ∈ C(0)⇒ I(z) ∈ C

(
1
2

)
.
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