Order Of Schlictness Of Certain Linear Sums*

Kunle Oladeji Babalola ${ }^{\dagger}$, Mashood Sidiq ‡, Afis Saliu ${ }^{\S}$, Catherine Ngozi Ejiejiๆ

Received 27 March 2014

Abstract

In this paper, we find the largest real number ρ such that the real part of certain geometric quantity greater than ρ implies schlictness of certain linear sums.

1 Introduction

Let \mathbb{H} denote the class of functions:

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\ldots \tag{1}
\end{equation*}
$$

which are holomorphic in the unit disk $E=\{z \in \mathbb{C}:|z|<1\}$. Let $f, g \in \mathbb{H}$, we say that $f(z)$ is subordinate to $g(z)$ (written as $f \prec g$) if there exists a holomorphic function $w(z)$ (not necessarily schlict) in E, satisfying $w(0)=0$ and $|w(z)|<1$ such that $f(z)=g(w(z)), z \in E$. For example, it is well known that any Caratheodory function $p(z)=1+c_{1} z+\cdots$ is subordinate to the Möbius function $L_{0}(z)=(1+z) /(1-z)$.

In [2], Babalola proved that holomorphic functions satisfying

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda) \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}+\lambda \frac{D^{n+1} f(z)}{D^{n} f(z)}\right\}>\beta, \quad z \in E \tag{2}
\end{equation*}
$$

also satisfy

$$
\operatorname{Re} \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}>0, \quad z \in E
$$

for all λ such that $\lambda \leq \beta<1$, and that if $\beta=\frac{1}{2}$, then for all $\lambda \geq 0$,

$$
\operatorname{Re} \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}>\frac{1}{2}, \quad 0<\alpha \leq 1
$$

D^{n} is defined as $D^{n} f(z)=D\left(D^{n-1} f(z)\right)=z\left(D^{n-1} f(z)\right)^{\prime}$ and for $n \geq 1$, schlictness is implied by both results.

[^0]DEFINITION. We say $f \in T_{n, \lambda}^{\alpha}(\beta)$ if and only if $f(z)$ satisfies the inequality (2).
In this paper, we shall find the largest real number ρ such that

$$
\operatorname{Re} \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}>\rho, \quad z \in E
$$

given that $f \in T_{n, \lambda}^{\alpha}(\beta)$ for $0 \leq \lambda \leq \beta<1$. To do this we shall employ the technique of Briot-Bouquet differential subordination. A holomorphic function $p(z)$ is said to satisfy Briot-Bouquet differential subordination if

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\eta p(z)+\mu} \prec h(z), \quad z \in E \tag{3}
\end{equation*}
$$

for complex constants η and μ, and a complex function $h(z)$ with $h(0)=1$ such that $\operatorname{Re}[\eta h(z)+\mu]>0$ in E. If the differential equation

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{\eta q(z)+\mu}=h(z), \quad q(0)=1 \tag{4}
\end{equation*}
$$

has the schlict solution $q(z)$ in E, then

$$
p(z) \prec q(z) \prec h(z)
$$

and $q(z)$ is the best dominant.
A schlict function $\tilde{q}(z)$ is said to be the best dominant of the differential subordination (3) if $q(z)$ and $\tilde{q}(z)$ are dominants of (3) and $\tilde{q}(z) \prec q(z)$ for all the dominants $q(z)$ of (3). For more on the technique of differential subordination, see [3,4,5,7].

We state and prove our main result in Section 3.

2 Preliminary Lemmas

In this section, we present Lemmas 1-4 as follows.

LEMMA 1 ([1]). Let $f \in \mathbb{H}$ and $\alpha>0$ be real, if

$$
\frac{D^{n+1} f(z)^{\alpha}}{D^{n} f(z)^{\alpha}}
$$

is independent of n for $z \in E$, then

$$
\frac{D^{n+1} f(z)^{\alpha}}{D^{n} f(z)^{\alpha}}=\alpha \frac{D^{n+1} f(z)}{D^{n} f(z)}
$$

LEMMA 2 ([3]). Let η and μ be complex constants and $h(z)$ be a convex schlict function in E satisfying $h(0)=1$ and $\operatorname{Re}[\eta h(z)+\mu]>0$. Suppose $p \in P$ satisfies the differential subordination (3). If the differential equation (4) has schlict solution $q(z)$
in E, then $p(z) \prec q(z) \prec h(z)$ and $q(z)$ is the best dominant of (3). Furthermore, the formal solution of (4) is given as

$$
\begin{equation*}
q(z)=\frac{z F^{\prime}(z)}{F(z)}=\frac{\eta+\mu}{\eta}\left(\frac{H(z)}{F(z)}\right)^{\eta}-\frac{\mu}{\eta} \tag{5}
\end{equation*}
$$

where

$$
F(z)^{\eta}=\frac{\eta+\mu}{z^{\mu}} \int_{0}^{z} t^{\mu-1} H(t)^{\eta} d t
$$

and

$$
H(z)=z \exp \left(\int_{0}^{z} \frac{h(t)-1}{t} d t\right)
$$

LEMMA $3([6])$. Let v be a positive measure on $[0,1]$ and let h be a complex valued function defined on $E \times[0,1]$ such that $h(., t)$ is holomorphic in E for each $t \in[0,1]$ for all $z \in E$. Suppose that $\operatorname{Re}[h(z, t)]>0, h(-r, t)$ is real and

$$
\operatorname{Re}\left[\frac{1}{h(z, t)}\right] \geq \frac{1}{h(-r, t)} \text { for }|z| \leq r<1 \text { and } t \in[0,1]
$$

If

$$
h(z)=\int_{0}^{1} h(z, t) d v(t)
$$

then

$$
\operatorname{Re}\left[\frac{1}{h(z)}\right] \geq \frac{1}{h(-r)}
$$

For real or complex numbers a, b, c with $c \neq 0,-1,-2, \ldots$, the hypergeometric function is defined by

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=1+\frac{a \cdot b}{c} \cdot \frac{z}{1!}+\frac{a(a+1) \cdot b(b+1)}{c(c+1)} \cdot \frac{z^{2}}{2!}+\cdots . \tag{6}
\end{equation*}
$$

We note that the series converges absolutely for $z \in E$ and hence represents an holomorphic function in E. The following identities associated with the hypergeometric series are well known.

LEMMA $4([6])$. For real numbers $a, b, c(c \neq 0,-1,-2, \ldots)$, we have

$$
\begin{gathered}
\int_{0}^{1} t^{b-1} \frac{(1-t)^{c-b-1}}{(1-t z)^{a}} d t=\frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)}{ }_{2} F_{1}(a, b ; c ; z), \quad(c>b>0) \\
{ }_{2} F_{1}(a, b ; c ; z)={ }_{2} F_{1}(b, a ; c ; z)
\end{gathered}
$$

and

$$
{ }_{2} F_{1}(a, b ; c ; z)=(1-z)^{-a}{ }_{2} F_{1}\left(a, c-b ; c ; \frac{z}{z-1}\right) .
$$

3 Main Result

In this section, we present our main result.
THEOREM 1. Let $f \in T_{n, \lambda}^{\alpha}(\beta)$. If $\beta \geq \lambda \geq 0$, then

$$
\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \prec q(z) \prec \frac{1+(1-2 \beta) z}{1-z}
$$

where

$$
q(z)=\frac{\lambda(1-z)^{\frac{2 \alpha(\beta-1)}{\lambda}}}{\alpha(1-\lambda) \int_{0}^{1} s^{\frac{\alpha}{\lambda}-\alpha-1}(1-s z)^{\frac{2 \alpha(\beta-1)}{\lambda}} d s}=1+q_{1} z+\cdots
$$

is the best dominant. Furthermore

$$
\operatorname{Re} \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}>\rho
$$

where

$$
\rho=\left[{ }_{2} F_{1}\left(1, \frac{2 \alpha(1-\beta)}{\lambda} ; \frac{\alpha}{\lambda}-\alpha+1 ; \frac{1}{2}\right)\right]^{-1}
$$

PROOF. Since $f \in T_{n, \lambda}^{\alpha}(\beta)$, we see that

$$
\begin{equation*}
(1-\lambda) \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}+\lambda \frac{D^{n+1} f(z)}{D^{n} f(z)}=B_{n}(f ; \lambda) \prec \frac{1+(1-2 \beta) z}{1-z} . \tag{7}
\end{equation*}
$$

Let

$$
\begin{equation*}
\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}=p(z) \tag{8}
\end{equation*}
$$

Then $p(z)$ is holomorphic in E with $p(0)=1$. So taking the logarithmic differentiations in both sides of (8), we have

$$
\frac{D^{n+1} f(z)^{\alpha}}{D^{n} f(z)^{\alpha}}=\alpha+\frac{z p^{\prime}(z)}{p(z)}
$$

Using Lemma 1 and then simplify, we have

$$
\begin{equation*}
\frac{D^{n+1} f(z)}{D^{n} f(z)}=1+\frac{z p^{\prime}(z)}{\alpha p(z)} \tag{9}
\end{equation*}
$$

With (8) and (9) in (7), we have

$$
\lambda+(1-\lambda)\left[p(z)+\frac{z p^{\prime}(z)}{\alpha\left(\frac{1-\lambda}{\lambda}\right) p(z)}\right]=B_{n}(f ; \lambda) \prec \frac{1+(1-2 \beta) z}{1-z}
$$

If

$$
\lambda+(1-\lambda)\left[q(z)+\frac{z q^{\prime}(z)}{\alpha\left(\frac{1-\lambda}{\lambda}\right) q(z)}\right]=\frac{1+(1-2 \beta) z}{1-z}
$$

Babalola et al.
then

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{\alpha\left(\frac{1-\lambda}{\lambda}\right) q(z)}=\frac{1-\lambda+(1+\lambda-2 \beta) z}{(1-\lambda)(1-z)}=h(z) \tag{10}
\end{equation*}
$$

Then $h(0)=1$ and we take

$$
\eta=\frac{\alpha(1-\lambda)}{\lambda} \quad \text { and } \quad \mu=0
$$

It is easily verified that $\eta h(z)+\mu$ has positive real part given that $0 \leq \lambda \leq \beta$. Therefore, by Lemma $2, p(z)$ satisfies the differential subordination (3) and hence

$$
\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \prec q(z) \prec h(z)
$$

where $q(z)$ is the solution of differential equation (10) obtained as follows:

$$
H(z)=z(1-z)^{\frac{2(\beta-1)}{(1-\lambda)}}
$$

Also, we have

$$
F(z)=\left[\frac{\alpha(1-\lambda)}{\lambda} \int_{0}^{z} t^{\frac{\alpha}{\lambda}-\alpha-1}(1-t)^{\frac{2 \alpha(\beta-1)}{\lambda}} d t\right]^{\frac{\lambda}{\alpha(1-\lambda)}} .
$$

Now from (5), we have

$$
q(z)=\frac{H^{\eta}}{F^{\eta}}=\frac{\lambda}{\alpha(1-\lambda) Q(z)}
$$

where

$$
Q(z)=\int_{0}^{1} s^{\frac{\alpha}{\lambda}-\alpha-1}\left(\frac{1-s z}{1-z}\right)^{\frac{2 \alpha(\beta-1)}{\lambda}} d s
$$

Next, we show that

$$
\begin{equation*}
\inf _{|z|<1}\{\operatorname{Re}(q(z))\}=q(-1), z \in E \tag{11}
\end{equation*}
$$

To prove (11), we show that

$$
\operatorname{Re}\left\{\frac{1}{Q(z)}\right\} \geq \frac{1}{Q(-1)}
$$

and by Lemma 4 with some simplification, we get

$$
Q(z)=\frac{\Gamma(b)}{\Gamma(c)}{ }_{2} F_{1}\left(1, a ; c ; \frac{z}{z-1}\right)
$$

where

$$
a=\frac{2 \alpha(1-\beta)}{\lambda}, \quad b=\frac{\alpha}{\lambda}-\alpha \quad \text { and } \quad c=\frac{\alpha}{\lambda}-\alpha+1
$$

Hence, we see that

$$
Q(z)=\int_{0}^{1} h(z, s) d v(s)
$$

where

$$
h(z, s)=\frac{1-z}{1-(1-s) z}, 0 \leq s \leq 1
$$

and

$$
d v(s)=\frac{\Gamma(b)}{\Gamma(a) \Gamma(c-a)} s^{a-1}(1-s)^{c-a-1} d s
$$

which is a positive measure on $[0,1]$.
It will be noted that $\operatorname{Re}\{h(z, s)\}>0, h(-r, s)$ is real for $0 \leq r<1$, and

$$
\operatorname{Re}\left\{\frac{1}{h(z, s)}\right\}=\operatorname{Re}\left\{\frac{1-(1-s) z}{1-z}\right\} \geq \frac{1+(1-s) r}{1+r}=\frac{1}{h(-r, s)}
$$

for $|z| \leq r<1$ and $s \in[0,1]$. So using Lemma 3, we have

$$
\operatorname{Re}\left\{\frac{1}{Q(z)}\right\} \geq \frac{1}{Q(-r)}
$$

and letting $r \rightarrow 1^{-}$, we obtain

$$
\operatorname{Re}\left\{\frac{1}{Q(z)}\right\} \geq \frac{1}{Q(-1)}
$$

Hence we have

$$
\operatorname{Re}\left\{\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}\right\}>q(-1)
$$

that is,

$$
\operatorname{Re}\left\{\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}\right\}>\rho
$$

where

$$
\rho=\frac{\lambda}{\alpha(1-\lambda) Q(-1)}=\frac{\lambda}{\alpha(1-\lambda)}\left[2^{a} \int_{0}^{1} s^{b-1}(1+s)^{-a} d s\right]^{-1}
$$

By Lemma 4, we see that

$$
\rho=\frac{\lambda}{\alpha(1-\lambda)}\left[\frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)}{ }_{2} F_{1}\left(1, a ; c ; \frac{1}{2}\right)\right]^{-1}
$$

can be simplify as

$$
\rho=\left[{ }_{2} F_{1}\left(1, \frac{2 \alpha(1-\beta)}{\lambda} ; \frac{\alpha(1-\lambda)}{\lambda}+1 ; \frac{1}{2}\right)\right]^{-1}
$$

The bound ρ is the best possible.

4 Remark

We first remark that for $n \geq 1$, our result shows that holomorphic function $f(z)$, satisfying the geometric condition (2) defined by linear sum, is schlict of order ρ in the unit disk. Then by (6), we can write ρ in series form:

$$
\frac{1}{\rho}=1+\sum_{k=1}^{\infty} \frac{1}{2^{k}} \prod_{j=1}^{k} \frac{2 \alpha(1-\beta)+j \lambda}{\alpha(1-\lambda)+(j+1) \lambda}
$$

from which it follows that $\lambda=0$ yields $\rho=\beta$ for all α. The series can be rewritten as

$$
\frac{1}{\rho}=1+\sum_{k=1}^{\infty} \frac{1}{2^{k}} \prod_{j=1}^{k}\left(\frac{\alpha(1-\beta)+(j+1) \lambda}{\alpha(1-\lambda)+(j+1) \lambda}+\frac{\alpha(1-\beta)-\lambda}{\alpha(1-\lambda)+(j+1) \lambda}\right)
$$

Thus, if $\lambda \leq \alpha(1-\beta)$, we have

$$
\frac{1}{\rho}>1+\sum_{k=1}^{\infty} \frac{1}{2^{k}} \prod_{j=1}^{k} \frac{\alpha(1-\beta)+(j+1) \lambda}{\alpha(1-\lambda)+(j+1) \lambda}>1+\sum_{k=1}^{\infty} \frac{1}{2^{k}}>2
$$

It follows that $\rho>1 / 2$ whenever $0<\alpha \leq \frac{\beta}{1-\beta}$ which guarantees that $\lambda \leq \alpha(1-\beta)$ given that $\lambda \leq \beta$.

This deduction shows some improvement on the earlier result of Babalola [2] for λ in the real interval $[0, \beta]$.

Acknowledgment. The authors are grateful to the referee for his helpful comments.

References

[1] K. O. Babalola, On some n-starlike integral operators, Kragujevac Journal of Mathematics, 34(2010), 61-71.
[2] K. O. Babalola, On a linear combination of some geometric expressions, Indian Journal of Mathematics, Special Memorial Volume, 51(1)(2009), 1-8.
[3] P. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a Briot-Bouquet differential surbordination, Rev. Roumaine Math. Pures Appl., 29(1984), 567-573.
[4] S.S Miller and P.T. Mocanu, Schlict solution of Briot-Bouquet differential equations, Lecture Notes in Mathematics, Springer Berlin/Heidelberg, 1013(1983), 292-310.
[5] J. Patel and S. Rout, An application of differential subordinations, Rendiconti di Matematica, Serie VII, Roma 14(1994), 367-384.
[6] J. Patel, On certain subclass of p-valently Bazilevic functions, J. Ineq. Pure and Applied Math., 6(1)(2005), Art. 16.
[7] H. M. Srivastava and A. Y. Lashin, Some applications of the Briot-Bouquet differential subordination, J. Ineq. Pure and Appl. Math., 6(2)(2005) Art. 41.

[^0]: *Mathematics Subject Classifications: 35C45, 35C50.
 ${ }^{\dagger}$ Current: Department of Physical Sciences, Al-Hikmah University, Ilorin. Permanent: Department of Mathematics, University of Ilorin, Ilorin, Nigeria, kobabalola@gmail.com
 \ddagger Department of Mathematics, University of Ilorin, Ilorin, Nigeria, mashoodsidiq@yahoo.com
 §Department of Mathematics, Gombe State Univeristy, Gombe, Nigeria, afis.saliu66@gmail.com
 ${ }^{\top}$ Department of Mathematics, University of Ilorin, Ilorin, Nigeria, ejieji.cn@unilorin.edu.ng

