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Abstract

Assume that An and Gn denote the arithmetic and geometric means of the
integers 1, 2, . . . , n, respectively. It this paper, we obtain some sharp inequalities
and the asymptotic expansion of the ratio An/Gn.

1 Introduction

Assume that (an)n∈N is a positive real sequence. Through the paper, we denote
the arithmetic and geometric means of the numbers a1, a2, . . . , an, respectively, by
A(a1, . . . , an) and G(a1, . . . , an). A nice relation which connects the number e to the
mean values

An := An(1, 2, . . . , n) and Gn := Gn(1, 2, . . . , n)

asserts (see [2]) that

lim
n→∞

An
Gn

=
e

2
,

which is a consequence of the Stirling’s approximation

n! =
(n
e

)n√
2πn

[
1 +O

( 1
n

)]
. (1)

Motivated by this fact, recently we obtained similar asymptotic result concerning the
sequence of prime numbers, by proving validity of

A(p1, . . . , pn)

G(p1, . . . , pn)
=
e

2
+O

( 1

log n

)
,

where as usual pn denotes the nth prime number. More precisely, we computed the
value of constant of O-term for the case of prime numbers (see [1]).

In this paper, we obtain various properties of the ratio An/Gn, including sharp
and explicit lower and upper bounds, precise asymptotic expansion, and monotonicity.
More precisely, we show the following results.
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THEOREM 1. For any integers m > 1 and n > 1, let

J := Jm(n) =

m∑
r=1

B2r
(2r)(2r − 1)n2r−1 and um(n) =

|B2m|
2m(2m− 1)n2m−1 , (2)

where Bn denote the Bernoulli numbers. Then, for any integers m > 1 and n > 1,

e

2

(
1 +

1

n

)
e−

1
n (log

√
2πn+J+um(n)) 6 An

Gn
6 e

2

(
1 +

1

n

)
e−

1
n (log

√
2πn+J−um(n)). (3)

COROLLARY 2. For any integer n > 1, we have

An
Gn

=
e

2

(
1− 1

n
log
(√2πn

e

)
+O

( log2 n
n2

))
(4)

and (
An
Gn

)n
=

en+1
√
πn 2n+

1
2

(
1 +O

( 1
n

))
. (5)

COROLLARY 3. For any integer n > 1, we have
An
Gn

<
e

2
. (6)

The proof of the above results is hidden in heart of the following precise form of
Stirling’s approximation for n!.

LEMMA 4. For any integers m > 1 and n > 1, we have(n
e

)n√
2πn eJ−um(n) 6 n! 6

(n
e

)n√
2πn eJ+um(n). (7)

Our last result concerning the ratio An/Gn asserts that the sequence with general
term An/Gn is indeed strictly increasing.

THEOREM 5. For any integer n > 1, we have
An+1
Gn+1

>
An
Gn

. (8)

Finally, we note that in our proofs we will use the notion of Bernoulli functions
Bn({x}), where {x} denotes the fractional part of the real x. Among the proofs we
obtain an improper integral concerning the Bernoulli functions as follows.

COROLLARY 6. For any integer m > 1, we have

1

m

∫ ∞
1

B2m({x})
x2m

dx = log

(
2π

e2

)
+

m∑
r=1

B2r
r(2r − 1) .
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2 Proofs

PROOF OF LEMMA 4. We apply Euler—Maclaurin summation formula (see [3]) by
letting g(k) = log k, from which we obtain

log n! = n log n− n+ 1
2
log n+ 1−

m∑
r=1

B2r
(2r)(2r − 1) +

m∑
r=1

B2r
(2r)(2r − 1)n2r−1 +Rm,

where m > 1 is any fixed integer and

Rm =

∫ ∞
1

B2m({x})
2mx2m

dx−
∫ ∞
n

B2m({x})
2mx2m

dx.

Thus, we obtain

log n! = n log n− n+ 1
2
log n+ Cm + J − I (9)

with

Cm = 1 +

∫ ∞
1

B2m({x})
2mx2m

dx−
m∑
r=1

B2r
(2r)(2r − 1) , (10)

a constant depending, at most, only on m. Also, the remainders J , defined as in (2),
and

I =

∫ ∞
n

B2m({x})
2mx2m

dx (11)

satisfy J � 1
n and I �

1
n as n→∞. So, if we let

Dn =
n!(

n
e

)n
n
1
2

and D = lim
n→∞

Dn,

then we have

Cm = lim
n→∞

[
log n!−

(
n log n− n+ 1

2
log n

)]
= lim
n→∞

logDn = logD.

A simple computation shows that

(Dn)
2
=
n!2e2n

n2n+1
and D2n =

(2n)!e2n

(2n)2n+
1
2

.

Hence, we obtain
(Dn)

2

D2n
=
n!222n

(2n)!

√
2

n
.

We recall the Wallis product formula for π (see [5] for an elementary proof), which
asserts that

lim
n→∞

n∏
k=1

(
2k

2k − 1 ×
2k

2k + 1

)
=
π

2
.
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We note that

n∏
k=1

(
2k

2k − 1 ×
2k

2k + 1

)
=

(
n!222n

(2n)!

)2
1

2n+ 1

=

(
(Dn)

2

D2n

√
n

2

)2
1

2n+ 1
=

(
(Dn)

2

D2n

)2
n

2(2n+ 1)
.

Hence, we get

D2

4
= lim
n→∞

(
(Dn)

2

D2n

)2
n

2(2n+ 1)
=
π

2
.

Thus, we obtain D =
√
2π, and consequently

Cm = logD = log
√
2π for any integer m > 1. (12)

Therefore, by using (9), we imply that

n! =
(n
e

)n√
n eCmeJ−I =

(n
e

)n√
2πn eJ−I . (13)

In particular, we obtain Stirling’s approximation for n! as in (1). More precisely, we
have

|I| 6
∫ ∞
n

|B2m({x})|
2mx2m

dx 6 |B2m|
2m

∫ ∞
n

dx

x2m
= um(n).

This completes the proof of Lemma 4.

We apply the relations (10) and (12) to obtain Corollary 6.

PROOF OF COROLLARY 2. By using (13), we obtain

An
Gn

=
e

2

(
1 +

1

n

)
(2πn)−

1
2n e−

J−I
n =

e

2

(
1 +

1

n

)
e−

1
n (log

√
2πn+J−I). (14)

Thus, we have (
An
Gn

)n
=
(e
2

)n(
1 +

1

n

)n
e−(log

√
2πn+J−I).

We use the expansion
(
1 + 1

n

)n
= e

(
1 +O( 1n )

)
to conclude the proof of (5). To prove

(4), we use (14) with the approximation

e−
1
n (log

√
2πn+J−I) = 1− 1

n
log
√
2πn+O

( log2 n
n2

)
.

This completes the proof of Corollary 2.

PROOF OF THEOREM 1. We start from the fact that

An
Gn

=
n+ 1

2 n!
1
n

,
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and then, we use the sharp inequalities in (7) to complete the proof.

PROOF OF COROLLARY 3. The assertion is valid for n = 1. We consider the
right hand side of the inequalities in (3) with m = 5. In order to prove (6), we require
to have (

1 +
1

n

)
e−

1
n (log

√
2πn+J5(n)−u5(n)) < 1. (15)

Considering the inequality
(
1 + 1

n

)n
< e, which is valid for any integer n > 1, we

observe that the inequality (15) holds true, provided

f(n) := J5(n)− u5(n)− 1 + log
√
2πn > 0.

The function f(x), defined over x ∈ [1,∞), is strictly increasing and f(1)f(2) < 0.
Thus, f(n) > 0 for n > 2, from which we imply validity of (6) for n > 2. This
completes the proof of Corollary 3.

PROOF OF THEOREM 5. The inequality (8) is equivalent to

n! > (n+ 1)n
(
n+ 1

n+ 2

)n(n+1)
.

We prove the last inequality by induction on n. Clearly, it is ture for n = 1. To deduce
the (n+ 1)th step from the nth step, we require to have

(n+ 1)n+1
(
n+ 1

n+ 2

)n(n+1)
> (n+ 2)n+1

(
n+ 2

n+ 3

)(n+1)(n+2)
,

or equivalently, we should have

(n+ 1)n+1(n+ 3)n+2 > (n+ 2)2n+3, (16)

for any integer n > 1. Now, we note that (16) is equivalent by the assertion en+1 < en+2
for any integer n > 1, where

en =

(
1 +

1

n

)n
. (17)

The sequence with general term en is strictly increasing, because if we apply the
Arithmetic—Geometric mean inequality (see [4] for a very fast and elementary proof)
on the numbers

1,

n times︷ ︸︸ ︷
1

n+ 1
, . . . ,

1

n+ 1
,

we imply that

1 + n
(
1 + 1

n

)
n+ 1

> n+1

√(
1 +

1

n

)n
,
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or equivalently

1 +
1

n+ 1
>

(
1 +

1

n

) n
n+1

,

and the later inequality is en+1 > en. The proof is complete.
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