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Abstract

The aim of this paper is to provide a unified treatment of the existence of
solution of both upper and lower semicontinuous quantum stochastic differential
inclusions. The quantum stochastic differential inclusion is driven by operator-
valued stochastic processes lying in certain metrizable locally convex space. The
unification of solution sets to these two discontinuous non-commutative stochastic
differential inclusions is established via the existence of directionally continuous
selections.

1 Introduction

Existence results for the solutions of quantum stochastic differential inclusions of Hud-
son and Parthasarathy quantum stochastic calculus was established in [9]. The Topo-
logical properties of solution sets for this Lipschitzian quantum stochastic differential
inclusions were established in [2]. The cases of coeffi cients that are discontinuous mul-
tivalued stochastic processes were established in [14, 15, 16]. In [15] the existence of
solutions for upper semicontinuous was established via Fixed point theorem while in
[14] the multivlaued stochastic processes possess minimal selections. The existence of
solution for the case of Lower semicontinuous multivlaued stochastic processes were
established in [16] via continuous selection of some predefined integral operators. The
extension of quantum stochastic differential inclusions to discontinuous cases was es-
sentially to enhance further applications of the rich quantum stochastic calculus to
quantum stochastic control theory and evolutions. The quantum stochastic differen-
tial inclusions considered in [9] have Lipschitzian coeffi cients defined on certain locally
convex space and in [10] more locally convex spaces were considered. By employing
one of the locally convex spaces defined in [10], a unified treatment of upper and lower
semicontinuous cases in this work was established.
For classical differential inclusions, the solution sets of upper and lower semicontin-

uous differential inclusions were considered via a directionally continuous selection in
[4]. This directionally continuous selection which is a non-convex analogue of Michael
selection was first considered in [3] for finite dimensional case and for an arbitrary Ba-
nach space in [6]. A more general case was established in [5], which shall be employed
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in our work. The paracompact property of the locally convex space which is the do-
main of our multivalued stochastic processes in this work guaranteed the existence of
directional continuous selection which provides a link between upper and lower semi-
continuous multifunctions. In the sequel, the work shall be as follows; in section 2,
preliminaries on quantum stochastic differential inclusions shall be given. In section 3,
our main result shall be proved.

2 Preliminaries

In this section, we shall adopt the notations in [10]. Let D be some pre-Hilbert space
whose completion is R; γ is a fixed Hilbert space and L2γ(R+) is the space of square
integrable γ-valued maps on R+. The inner product of the Hilbert spaceR⊗Γ(L2γ(R+))
will be denoted by 〈., .〉 and ‖ . ‖ the norm induced by 〈., .〉. Let E be linear space
generated by the exponential vectors in Fock space Γ(L2γ(R+)) and (D⊗E)∞ be the
set of all sequences η = {ηn}∞n=1 and ξ = {ξn}∞n=1 of members of D⊗E, such that
Σ∞n=1 | 〈ηn, xξn〉 |< ∞, ∀x ∈ A, where A ≡ L+w((D⊗E)∞,R⊗ Γ(L2γ(R+))). Then the
family of seminorms {‖ . ‖ηξ, η, ξ ∈ (D⊗E)∞}, where

‖x‖ηξ =

∞∑
n=1

|〈ηn, xξn〉| for x ∈ A,

generates a σ-weak topology, denoted by τσw [10]. The completion of (A, τσw) is
denoted by Ã. The underlying elements of Ã consist of linear maps from (D⊗E)∞ into
R⊗ Γ(L2γ(R+)) having domains of their adjoints containing (D⊗E)∞.

REMARK 1. By Theorem V.5 [18], we remark that the σ-weak topology τσw is
metrizable since (D⊗E)∞ has a countable base, hence Ã is a paracompact space [13].

For a fixed Hilbert space γ, the spaces Lploc(Ã), L∞γ,loc(R+) and Lploc(I × Ã) are
adopted as in [10]. For a topological space N , let clos(N ) be the collection of all
nonempty closed subsets of N ; we shall employ the Hausdorff topology on clos(Ã) as
defined in [9]. Moreover, for A,B ∈ clos(C) and x ∈ C, a complex number, we define
the Hausdorff distance, ρ(A,B) as

d(x,B) ≡ inf
y∈B
|x− y| , δ(A,B) ≡ sup

x∈A
d(x,B), and ρ(A,B) ≡ max(δ(A,B), δ(B,A)).

Then ρ is a metric on clos(C) and induces a metric topology on the space.

DEFINITION 1.

(a) By a multivalued stochastic process indexed by I = [0, T ] ⊆ R+, we mean a
multifunction on I with values in clos(Ã).

(b) If Φ is a multivalued stochastic process indexed by I ⊆ R+, then a selection of Φ

is a stochastic process X : I → Ã with the property that X(t) ∈ Φ(t) for almost
all t ∈ I.
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(c) A multivalued stochastic process Φ will be called

(i) adapted if Φ(t) ⊆ Ãt for each t ∈ R+;
(ii) measurable if t 7→ dηξ(x,Φ(t)) is measurable for arbitrary x ∈ Ã, η, ξ ∈

D⊗E;
(iii) locally absolutely p-integrable if t 7→‖ Φ(t) ‖ηξ, t ∈ R+, lies in Lploc(Ã) for

arbitrary η, ξ ∈ D⊗E.

(d) The set of all absolutely p-integrable multivalued stochastic processes will be
denoted by Lploc(Ã)mvs and for p ∈ (0,∞), Lploc(I × Ã)mvs is the set of maps
Φ : I × Ã → clos(Ã) such that t 7→ Φ(t,X(t)), t ∈ I lies in Lploc(Ã)mvs for every
X ∈ Lploc(Ã).

Consider stochastic processes E,F,G,H ∈ L2loc(I × Ã) and (0, x0) be a fixed point
in [0, T ]× Ã. Then, a relation of the form

X(t) ∈ x0 +

∫ t

0

(E(s,X(s))dΛπ(s) + F (s,X(s))dAf (s)

+G(s,X(s))dA+g (s) +H(s,X(s))ds for t ∈ [0, T ]

will be called a stochastic integral inclusion with coeffi cients E, F, and G and H.
The stochastic differential inclusion corresponding to the integral inclusion above is

dX(t) ∈ E(t,X(t))dΛπ(t) + F (t,X(t))dAf (t)

+G(t,X(t))dA+g (t) +H(t,X(t))dt,

X(0) = x0 for almost all t ∈ [0, T ].

(1)

Let P : [0, T ]× Ã → 2sesq(D⊗E)
2

be sesquilinear form valued stochastic process defined
in [9] in terms of E,F,G,H by using the matrix elements in Hudson and Parthasarathy
quantum stochastic calculus [12], it was established that problem (1) is equivalent to

d

dt
〈η,X(t)ξ〉 ∈ P(t,X(t))(η, ξ),

X(0) = x0 for almost all t ∈ [0, T ].
(2)

As explained in [9], the map P is such that:

P(t, x)(η, ξ) 6= P̃(t, 〈η, xξ〉)

for some complex-valued multifunction P̃ defined on I×C for t ∈ I, x ∈ Ã, η, ξ ∈ D⊗E.
The notion of solution of (1) or equivalently (2) is defined as follows:

DEFINITION 2. By a solution of (1) or equivalently (2), we mean a stochastic
process ϕ ∈ Ad(Ã)wac ∩ L2loc(Ã) such that

dϕ(t) ∈ E(t, ϕ(t))dΛπ(t) + F (t, ϕ(t))dAf (t)

+G(t, ϕ(t))dA+g (t) +H(t, ϕ(t))dt for almost all t ∈ I,
ϕ(t0) = ϕ0,
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or equivalently

d

dt
〈η, ϕ(t)ξ〉 ∈ P(t, ϕ(t))(η, ξ).

ϕ(t0) = ϕ0,

for arbitrary η, ξ ∈ (D⊗E)∞, almost all t ∈ I. A multivalued stochastic process
Φ : I×Ã → 2Ã is said to be lower semicontinuous if for every open set V ⊂ Ã, Φ−1(V )

is open. Also, Ψ : I × Ã → 2Ã is said to be upper semicontinuous if, for every x ∈ Ã
and ε > 0, there exists δ > 0 such that

dηξ((t1, x), (t2, y)) < δ =⇒ Ψ(t2, y) ⊆ B(Ψ(t1, x), ε),

where
dηξ((t1, x), (t2, y)) = max

{
|t1 − t2| , ‖x− y‖ηξ

}
and

B(Ψ(t1, x), ε) =
{

(t, z) ∈ I × Ã : |t− t1| < ε and ‖z − x‖ηξ < ε
}
.

Let meas(J) be the Lebesgue measure of a set J ⊂ R, t is a point of density for J if

lim
ε→0

meas(J ∩ [t− ε, t+ ε])

2ε
= 1.

It follows from the previous works; [15], [16] and [14], that if E,F,G,H ∈ L2loc(I × Ã)
are upper semicontinuous (resp. lower semicontinuous) then the equivalent sesquilinear
form valued stochastic process P is upper semicontinuous (resp. lower semicontinuous).
We consider a topology τ+ on I ×Ã stronger than the usual metric topology of I ×Ã.
A topology τ+ is said to satisfy a property (P ):

(P) For every pair of sets A ⊂ B with A closed and B open (in the original topology)
there exists a set C closed-open with respect to the topology τ+ such that A ⊂
C ⊂ B

Let I = [a, b] and Ω ⊂ I × Ã, the following set defined in [7] is a basis of open
neighbourhoods for a topology τ+ on Ω stronger than the metric one, and satisfies
property P. For every (t, x) ∈ Ω and ε > 0,

V (t, x, ε) =
{

(s, y) ∈ Ω : t ≤ s < t+ ε and ‖y − x‖ηξ ≤M(s− t)
}
.

Moreover, each set V (t, x, ε) is closed-open in the topology τ+.

3 Main Results

The following Lemma shall be employed in the proof of the main result.
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LEMMA 1. Let X(.) be a Caratheodory solution of upper (lower) semicontinuous
quantum stochastic differential inclusion

d

dt
〈η,X(t)ξ〉 ∈ Φ(t,X(t))(η, ξ) on [a, b].

Assume that J is the set of times t ∈ [a, b] such that

(i)
d

dt
〈η,X(t)ξ〉 ∈ Φ(t,X(t))(η, ξ).

(ii) If there exists a sequence tk, strictly decreasing to t, with

d

dt
〈η,X(tk)ξ〉 ∈ d

dt
〈η,X(t)ξ〉 and d

dt
〈η,X(tk)ξ〉 ∈ Φ(tk, X(tk))(η, ξ)

for any k and η, ξ ∈ (D⊗E)∞.

Then meas(J) = b− a.

PROOF. Let J1 be the set of times where (i) holds. Since X is a caratheodory
solution, then meas(J1) = b − a. Fix any ε > 0, since d

dt 〈η,X(t)ξ〉 is measurable,
by Lusin’s theorem there exists a weakly continuous stochastic process u such that
〈η, u(t)ξ〉 = d

dt 〈η,X(t)ξ〉 for every t in a set J2 ⊂ J1 with meas(J2) > b − a − ε.
Clearly (ii) holds at every t ∈ J2 which is a point of density for J2. Hence meas(J) ≥
meas(J2) > b− a− ε, since ε was arbitrary, the lemma is proved.
The following is an adaptation of Theorem 1 in [5] to our non commutative setting.

THEOREM 1. Suppose the following hold:

(i) For almost all t ∈ I and η, ξ ∈ D⊗E, the maps X → Ψ(t,X)(η, ξ), Ψ ∈
{µE, νF, σG,H} are non-empty lower semicontinuous multivalued stochastic processes.

(ii) For almost all t ∈ I and η, ξ ∈ D⊗E, the maps t→ Ψ(t,X)(η, ξ) are closed.

(iii) τ+ is a topology on I × Ã with property (P).

Then the sesquilinear form valued multifunction, (t,X(t))→ P(t,X(t))(η, ξ)

P(t,X(t))(η, ξ) = (µE)(t,X(t))(η, ξ) + (νF )(t,X(t))(η, ξ)

+ (σG)(t,X(t))(η, ξ) +H(t,X(t))(η, ξ)

admits a τ+-continuous selection.

PROOF. P is non-empty since each of Ψ ∈ {µE, νF, σG,H} is non-empty then P
is a non-empty lower semicontinuous sesquilinear form-valued multifunction. We shall
employ a similar procedure as in the proof of Theorem 3.2 in [5] to construct a τ+-
continuous ε-approximate selections Pε of P, hence by inductive hypothesis we obtain
a τ+-continuous selection P of P. Let ε > 0 be fixed, since X → P(t,X)(η, ξ) is lower



140 On the Solution Sets of Differential Inclusions

semicontinuous, for every X(t) ∈ Ã, we choose point yηξ,X(t) ∈ P(t,X(t))(η, ξ) and
neighbourhood UX of X(t) such that

inf
yηξ,P(t)∈P(t,X(t′))(η,ξ)

|yηξ,X(t)− yηξ,P(t)| < ε for X(t′) ∈ UX . (3)

Now, let (Vα)α∈βε be a local finite open refinement of (UX)X(t)∈Ã, with Vα ⊂ UXα ,
and let (Wα)α∈βε be another open refinement such that cl(Wα) ⊂ Vα for all α ∈ βε.
By property (P), for each α, we can choose a set Zα, clopen w.r.t. τ+, such that

cl(Wα) ⊂ int(Zα) ⊂ cl(Zα) ⊂ Vα. (4)

Then (Zα)α is a local finite τ+ clopen covering of Ã. Let � be a well-ordering of the
set βε, define for each α ∈ βε,

Ωεα = Zα \
⋃
λ<α

Zλ.

Set Oε = (Ωεα), α ∈ βε. By well-ordering, every x ∈ Ã belongs to exactly one set Ωεα
where α = min{α ∈ βε : x ∈ Zα}. Hence, Oε is a partition of Ã. Moreover, since Zα
is locally finite(wrt τ and therefore wrt τ+), the sets

⋃
λ<α Zλ are τ

+ clopen. Hence
Oε is a τ+ clopen disjoint covering of Ã such that, {cl(Ωεα)} refines (Vα)α. By setting
yεηξ,α = yηξ,Xα and Pε(t,X(t))(η, ξ) = yηξ,Xα , ∀α ∈ βε, we have τ+ continuous function
Pε, which by (3), satisfies

inf
yηξ,P(t)∈P(t,X(t))(η,ξ)

|Pε(t,X(t))(η, ξ)− yηξ,P(t)| < ε.

Therefore, there exists an ε-approximate selection Pε of P. Since ε was arbitrarily
chosen,thus we have a τ+-continuous selection P of P.
Let P : I×Ã → sesq(D⊗E)2∞ be sesquilinear form -valued directionally continuous

map as defined above. The upper semicontinuous, convex valued regularization of
P , corresponding to a given η, ξ ∈ (D⊗E)∞ is defined as

R(t, x)(η, ξ) =
⋂
ε>0

co
{
P (s, y)(η, ξ) : |t− s| < ε and ‖x− y‖ηξ < ε

}
. (5)

THEOREM 2. Let Ω be a closed subset of I × Ã, and let P : I × Ã → 2sesq(D⊗E)∞)

be a bounded, lower semicontinuous multifunction. Then there exists an upper semi-
continuous map R : Ω → 2sesq(D⊗E)∞) with compact convex values such that every
Caratheodory solution of

d

dt
〈η,X(t)ξ〉 ∈ P(t,X(t))(η, ξ) (6)

is also a solution of
d

dt
〈η,X(t)ξ〉 ∈ R(t,X(t))(η, ξ). (7)

PROOF. Let X(t) be a Caratheodory solution of d
dt 〈η,X(t)ξ〉 ∈ R(t,X(t))(η, ξ) on

[a, b]. Define J ⊂ [a, b] to be the set of times t such that
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(i) d
dt 〈η,X(t)ξ〉 ∈ R(t,X(t))(η, ξ).

(ii) There exists a sequence of times tk strictly decreasing to t such that d
dt 〈η,X(tk)ξ〉 ∈

R(tk, X(tk))(η, ξ) and d
dt 〈η,X(tk)ξ〉 → d

dt 〈η,X(t)ξ〉.

By Lemma 1 above, J has a full measure in [a, b]. We claim that d
dt 〈η,X(t)ξ〉 =

P (t,X(t))(η, ξ) for every t ∈ J. Assume on the contrary that t ∈ J but∣∣∣∣ ddt 〈η,X(t)ξ〉 − P (t,X(t))(η, ξ)

∣∣∣∣ = ε > 0. (8)

Using the directional continuity of P at the point (t,X), choose δ > 0 such that

|P (s, y)(η, ξ)− P (t,X(t))(η, ξ)| < ε

2
(9)

whenever t ≤ s < t + δ, ‖ y − X(t) ‖ηξ≤ M(s − t). Let tk → t be a sequence with
properties stated in (ii), then there exists k large enough so that 0 < tk − t < δ and∣∣∣∣ ddt 〈η,X(tk)ξ〉 − d

dt
〈η,X(t)ξ〉

∣∣∣∣ < ε

2
. (10)

The boundedness assumption | P (t,X)(η, ξ) |< L implies that R(t,X)(η, ξ) ⊆ B(0, L)
for all (t,X). Our solution X(t) is therefore Lipschitz continuous with constant L. In
particular,

‖X(tk)−X(t)‖ηξ ≤ L(tk − t) < M(tk − t).

Then we conclude that

R(tk, X(tk)) ⊆ B
(
P (t,X(t))(η, ξ),

ε

2

)
. (11)

Hence ∣∣∣∣ ddt 〈η,X(tk)ξ〉 − P (t,X(t))(η, ξ)

∣∣∣∣ ≤ ε

2
. (12)

Comparing we obtain a contradiction, which proves that the caratheodory solutions of

d

dt
〈η,X(t)ξ〉 = P (t,X(t))(η, ξ)

and (7) coincide. Now since P is bounded we can assume P (t,X)(η, ξ) ⊂ B(0, L)
for some constant L and all (t,X) ∈ Ω. Choose M > L and let P be τ+-continuous
selection of P, by Theorem 1 above, such a P exists. Then if R is the regularization
multivalued stochastic process as defined above, R is upper semicontinuous compact
convex-valued [1]. Let now X(.) be a Caratheodory solution of (7) on [a, b] since P is
a selection of P, then X(.) is also a solution of (6).
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