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Abstract

Let P (z) be a polynomial of degree n and for α ∈ C, let DαP (z) := nP (z) +
(α − z)P ′(z) denote the polar derivative of the polynomial P (z) with respect to
α. In this paper, we obtain Lr mean extension of some inequalities concerning
the polar derivative of a polynomial having all zeros inside a circle. Our results
generalize and sharpen some well-known polynomial inequalities.

1 Introduction

Let P (z) be a polynomial of degree n, then concerning the estimate for the upper
bound of the maximum modulus of |P ′(z)| in terms of the maximum modulus of |P (z)|
on the unit circle |z| = 1, we have

max
|z|=1

|P ′(z)| ≤ n max
|z|=1

|P (z)| .

Inequality (1) is a famous result known as Bernstein’s Inequality (for reference see
[10]). Equality in (1) holds if and only if P (z) has all its zeros at the origin. For the
polynomials having all their zeros in the disk |z| ≤ 1, Paul Turán [13] estimated the
lower bound for the maximum modulus of |P ′(z)| on |z| = 1 by showing that if P (z) is
a polynomial of degree n and has all its zeros in |z| ≤ 1, then

n max
|z|=1

|P (z)| ≤ 2max
|z|=1

|P ′(z)| . (1)

Inequality (1) is best possible with equality holds for P (z) = αzn+β where |α| = |β| 6=
0.
As an extension of (1), Malik [7] proved that if P (z) is a polynomial of degree n

having all its zeros in |z| ≤ k where k ≤ 1, then

n max
|z|=1

|P (z)| ≤ (1 + k)max
|z|=1

|P ′(z)| . (2)

Equality in (2) holds for P (z) = (z + k)n where k ≤ 1.
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On the other hand, for the class of polynomials P (z) = anz
n +

∑n
j=µ an−jz

n−j ,
1 ≤ µ ≤ n, of degree n having all their zeros in |z| ≤ k, k ≤ 1, Aziz and Shah [5] proved
that

n max
|z|=1

|P (z)| ≤ (1 + kµ)max
|z|=1

|P ′(z)| − n

kn−µ
min
|z|=k
|P (z)|. (3)

Malik [8] obtained a generalization of (1) in the sense that the left-hand side of
(1) is replaced by a factor involving the integral mean of |P (z)| on |z| = 1. In fact, he
proved that if P (z) is a polynomial of degree n having all its zeros in |z| ≤ 1, then for
each q > 0,

n

{ 2π∫
0

∣∣P (eiθ)∣∣q dθ} 1
q

≤
{ 2π∫

0

∣∣1 + eiθ
∣∣q dθ} 1

q

max
|z|=1
|P ′(z)|. (4)

The corresponding extension of (2), which is a generalization of (4), was obtained
by Aziz [1] who proved that if P (z) is a polynomial of degree n having all its zeros in
|z| ≤ k where k ≤ 1, then for each q ≥ 0

n

{ 2π∫
0

∣∣P (eiθ)∣∣q dθ} 1
q

≤
{ 2π∫

0

∣∣1 + keiθ
∣∣q dθ} 1

q

max
|z|=1
|P ′(z)|. (5)

Inequality (5) reduces to the inequality (2) by letting q →∞, .
As a generalization of (5), Aziz and Ahemad [2] proved that if P (z) is a polynomial

of degree n having all its zeros in |z| ≤ k where k ≤ 1, then for each r > 0, p > 1, q > 1
with p−1 + q−1 = 1,

n

{ 2π∫
0

∣∣P (eiθ)∣∣r dθ} 1
r

≤
{ 2π∫

0

∣∣1 + keiθ
∣∣qr dθ} 1

qr
{ 2π∫

0

|P ′(eiθ)|prdθ
} 1

pr

(6)

Let DαP (z) denote the polar derivative of a polynomial P (z) of degree n with
respect to a point α ∈ C, then (see [9])

DαP (z) = nP (z) + (α− z)P ′(z).

The polynomial DαP (z) is of degree at most n − 1 and it generalizes the ordinary
derivative in the sense that

lim
α→∞

DαP (z)

α
= P ′(z)

uniformly with respect to z for |z| ≤ R and R > 0.

As an extension of (2) to the polar derivative, Aziz and Rather [3] proved that if
all the zeros of P (z) lie in |z| ≤ k where k ≤ 1, then for α ∈ C with |α| ≥ k,

n(|α| − k) max
|z|=1

|P (z)| ≤ (1 + k)max
|z|=1

|DαP (z)| . (7)
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For the class of lacunary type polynomials P (z) = anz
n +

∑n
ν=µ an−νz

n−ν , 1 ≤
µ ≤ n, of degree n having all their zeros in |z| ≤ k where k ≤ 1, Aziz and Rather [4]
also proved that if for α ∈ C with |α| ≥ kµ,

n(|α| − kµ)max
|z|=1

|P (z)| ≤ (1 + kµ)max
|z|=1

|DαP (z)| . (8)

As a refinement of inequality (8), and an extension of inequality (3) to polar deriv-
ative, Rather and Mir [12] proved that if P (z) = anz

n +
∑n
j=µ an−jz

n−j , 1 ≤ µ ≤ n,
is a polynomial of degree n having all its zeros in |z| ≤ k, k ≤ 1, then for α ∈ C with
|α| ≥ kµ,

max
|z|=1

|DαP (z)| ≥ n (|α| − kµ)

1 + kµ
max
|z|=1

|P (z)|+ n (|α|+ 1)

kn−µ (1 + kµ)
min
|z|=k
|P (z)|. (9)

2 Main Results

In this paper, we first extend inequality (6) to the polar derivative and prove the
following result.

THEOREM 1. If P (z) is a polynomial of degree n having all its zeros in |z| ≤ k
where k ≤ 1, then for α, β ∈ C with |α| ≥ k, |β| ≤ 1 and for each r > 0, p > 1, q > 1
with p−1 + q−1 = 1,

n(|α| − k)

{ 2π∫
0

∣∣∣∣P (eiθ) +
βm

kn−1

∣∣∣∣r dθ
} 1

r

≤
{ 2π∫

0

|1 + keiθ|prdθ
} 1

pr
{ 2π∫

0

(∣∣DαP (eiθ)
∣∣− mn

kn−1

)qr
dθ

} 1
qr

(10)

where m = min|z|=k |P (z)|.

REMARK 1. By letting r → ∞ and choosing the argument of β in the left side
of inequality (10) suitably, we obtain a result due to Aziz and Rather [3]. Instead of
proving Thereon 1, we prove the following more general result which is also Lr mean
extension of (9).

THEOREM 2. If P (z) = anz
n +

∑n
ν=µ an−νz

n−ν , 1 ≤ µ ≤ n, is a polynomial of
degree n having all its zeros in |z| ≤ k where k ≤ 1, then for α, β ∈ C with |α| ≥ kµ,
|β| ≤ 1 and for each r > 0, p > 1, q > 1 with p−1 + q−1 = 1,

n(|α| − kµ)

{ 2π∫
0

∣∣∣∣P (eiθ) +
βm

kn−µ

∣∣∣∣r dθ
} 1

r

≤
{ 2π∫

0

|1 + kµeiθ|prdθ
} 1

pr
{ 2π∫

0

(∣∣DαP (eiθ)
∣∣− mn

kn−µ

)qr
dθ

} 1
qr

(11)
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where m = min|z|=k |P (z)|.

If we let q →∞, in (11) so that p→ 1, we obtain the following result.

COROLLARY 1. If P (z) = anz
n +

∑n
ν=µ an−νz

n−ν , 1 ≤ µ ≤ n, is a polynomial of
degree n having all its zeros in |z| ≤ k where k ≤ 1, then for α, β ∈ C with |α| ≥ kµ,
|β| ≤ 1 and for each r > 0,

n(|α| − kµ)

{ 2π∫
0

∣∣∣∣P (eiθ) +
βm

kn−µ

∣∣∣∣r dθ
} 1

r

≤
{ 2π∫

0

|1 + kµeiθ|rdθ
} 1

r
{

max
|z|=1

∣∣DαP (z)
∣∣− mn

kn−µ

}
(12)

where m = min|z|=k |P (z)|.
REMARK 2. Again, letting r →∞ and choosing the argument of β in the left side

of inequality (12) suitably, we obtain inequality (9).

For the proof of Theorem 2, we need the following Lemma.

3 Lemma

The following Lemma holds due to N. A. Rather [11].

LEMMA 1. If P (z) = anz
n+
∑n
ν=µ an−νz

n−ν , 1 ≤ µ ≤ n, is a polynomial of degree
almost n having all its zeros in in |z| ≤ k where k ≤ 1, then for |z| = 1,

|Q′(z)|+ nm

kn−µ
≤ kµ|P ′(z)| (13)

where Q(z) = znP (1/z) and m = min|z|=k|P (z)|.

4 Proof of Theorem 2

In this section, we prove Theorem 2.
Let Q(z) = znP (1/z), then P (z) = znQ(1/z) and it can be easily verified that for

|z| = 1,
|Q′(z)| = |nP (z)− zP ′(z)| and |P ′(z)| = |nQ(z)− zQ′(z)|. (14)

By Lemma 1, we have for every β with |β| ≤ 1 and |z| = 1,∣∣∣∣Q′(z) + β̄
nmzn−1

kn−µ

∣∣∣∣ ≤ |Q′(z)|+ nm

kn−µ
≤ kµ|P ′(z)|. (15)

Using (14) in (15), we get for |z| = 1,∣∣∣∣Q′(z) + β̄
nmzn−1

kn−µ

∣∣∣∣ ≤ kµ|nQ(z)− zQ′(z)|. (16)



120 Lr Inequalities Involving the Polar Derivative of a Polynomial

Again, by Lemma 1 for every real or complex number α with |α| ≥ k and |z| = 1, we
have

|DαP (z)| ≥ |α| |P ′(z)| − |Q′(z)| ≥ (|α| − kµ) |P ′(z)|+ mn

kn−µ
,

so that
|DαP (z)| − mn

kn−µ
≥ (|α| − kµ)|P ′(z)|. (17)

Since P (z) has all its zeros in |z| ≤ k ≤ 1, it follows by Gauss-Lucas Theorem that all
the zeros of P ′(z) also lie in |z| ≤ k ≤ 1. This implies that the polynomial

zn−1P ′(1/z) ≡ nQ(z)− zQ′(z)

does not vanish in |z| < 1. Therefore, it follows from (16) that the function

w(z) =

z

(
Q′(z) + β̄

nmzn−1

kn−µ

)
kµ (nQ(z)− zQ′(z))

is analytic for |z| ≤ 1 and |w(z)| ≤ 1 for |z| = 1. Furthermore, w(0) = 0. Thus the
function 1 + kµw(z) is subordinate to the function 1 + kµz for |z| ≤ 1. Hence by a well
known property of subordination [6], we have

2π∫
0

∣∣1 + kµw(eiθ)
∣∣r dθ ≤ 2π∫

0

∣∣1 + kµeiθ
∣∣r dθ, r > 0. (18)

Now

1 + kµw(z) =

n

(
Q(z) + β̄

mzn

kn−µ

)
nQ(z)− zQ′(z) ,

and
|P ′(z)| = |zn−1P ′(1/z)| = |nQ(z)− zQ′(z)| for |z| = 1,

therefore for |z| = 1,

n

∣∣∣∣Q(z) + β̄
mzn

kn−µ

∣∣∣∣ = |1 + kµw(z)| |nQ(z)− zQ′(z)| = |1 + kµw(z)||P ′(z)|.

Equivalently,

n

∣∣∣∣znP (1/z) + β̄
mzn

kn−µ

∣∣∣∣ = |1 + kµw(z)||P ′(z)|.

This implies

n
∣∣∣P (z) + β

m

kn−µ

∣∣∣ = |1 + kµw(z)||P ′(z)| for |z| = 1. (19)

From (17) and (19), we deduce that for r > 0,

nr(|α| − kµ)r
2π∫
0

∣∣∣P (eiθ) + β
m

kn−µ

∣∣∣r dθ ≤ 2π∫
0

∣∣1 + kµw(eiθ)
∣∣r (∣∣DαP (eiθ)

∣∣− mn

kn−µ

)r
dθ.
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This gives with the help of Hölder’s inequality and (18), for p > 1, q > 1 with p−1 +
q−1 = 1,

nr(|α| − kµ)r
2π∫
0

∣∣∣P (eiθ) + β
m

kn−µ

∣∣∣r dθ
≤

 2π∫
0

∣∣1 + kµeiθ
∣∣pr dθ

1/p 2π∫
0

{∣∣DαP (eiθ)
∣∣− mn

kn−µ

}qr
dθ

1/q

,

equivalently,

n(|α| − kµ)


2π∫
0

∣∣∣P (eiθ) + β
m

kn−µ

∣∣∣r dθ


1
r

≤


2π∫
0

∣∣1 + kµeiθ
∣∣pr dθ


1
pr


2π∫
0

(∣∣DαP (eiθ)
∣∣− mn

kn−µ

)qr
dθ


1
qr

which proves the desired result.
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