
Applied Mathematics E-Notes, 14(2014), 151-160 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Some Statistical Inferences For Two Frequency
Distributions Arising In Bioinformatics∗

Davood Farbod†

Received 28 February 2014

Abstract

Discrete Distribution Generated by Levy’s Density (DLD) and some Pareto-
like frequency Distribution (PD) are considered. First, as examples, we will ex-
amine the DLD and the PD with two real data sets in bioinformatics. Second,
regression models for the parameters of the DLD and PD are built based on two
methods. Consistency, asymptotic normality and optimality of the Least Square
(LS) estimators are verified, respectively. Some Corollaries, Remarks and numer-
ical examples are also given.

1 Introduction

Several frequency distributions have been proposed for description phenomena arising
in large-scale biomolecular systems (see [1]). In this paper, we consider two DLD and
PD models. One of the most important problems for the DLD and PD is to investigate
the statistical analysis of parameters estimators. This paper is organized as follows.
Subsections 1.1 and 1.2 briefly give information about Levy Distribution and then
introduce distribution generated by Levy’s Law and also the PD model. Sections 2
and 3 contain main results of the paper. Conclusion is given in Section 4.

1.1 The DLD

The Levy Distribution is one of the few distributions that is Stable and has proba-
bility density function which is analytically expressible. On the other hand, the Levy
Distribution is a sub-family of Stable Laws (Stable Laws form a four-parametric class
of probability distributions allowing skewness, heavy tails and have other useful math-
ematical properties. The class was determined by Paul Levy in the 1920’s. For more
details see [13]) with the following density ([13])

s(x; γ, δ) =

√
γ

2π
(x− δ)− 3

2 exp(− γ

2(x− δ) ), γ ∈ R+, δ ∈ R, x > δ, (1)

where γ is the scale parameter and δ is the location parameter.
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Let us have the following probability function constructed from (1) when δ = 0
(see, for example, [3]):

p(x; γ) =
s(x; γ, 0)

dγ
, x = 1, 2, ..., (2)

where dγ =
∑∞
y=1 s(y; γ, 0) is the normalization factor. Some statistical analysis of the

parameters estimators of the model (2) have been considered in [3], [4] and [5].

NOTE: If random variable ξ has the DLD with the probability function (2), then
E(ξ)j =∞ when j ≥ 1

2 , and E(ξ)
j <∞ when j < 1

2 .

1.2 The PD

A two-parametric frequency distribution so-called PD was introduced by V. A. Kuznetsov
in 2001 (see [11]) for biomolecular needs. Its probability mass function is:

f(x; ρ, b) =
(x+ b)−ρ∑∞
y=1(y + b)

−ρ , x = 1, 2, ..., (3)

where 1 < ρ < ∞ is the shape parameter and −1 < b < ∞ is the location parameter
and shows the deviation of the PD from a simple power law. It appears as a distribution
associated with stochastic processes of gene expression in eukaryotic cells (see [11]).

2 Fitting of the DLD

Let us note that the model (2) has been constructed using discretization. But, the
model (2) has not been fitted with real data sets by now. In this Section, we shall
attempt to propose two real data sets in order to fit the model (2) and also compare to
the PD (3). Comparing to Farbod and Gasparian (see [6]), for applying the probability
function (2) to the data, truncated DLD is considered. Namely, random variable is
restricted to maximum observed in each data set. Some plots of the distribution (2)
for some different values of the scale parameter are presented as well.

EXAMPLE 1. We consider the number of amino acids in the protein chain (see [7])
as a real data set in the following Table:

Table 1
36 153 146 97 83 46 150 43
29 30 71 58 26 40 70 138

Based on Kolmogorov-Smirnov (K-S) test the p-value is 0.5896, which does not
reject the adequacy of the DLD for the number of amino acids. In order to an informal
goodness of fit test, we plot the empirical cumulative distribution function (ecdf) and
fitted cumulative distribution function (cdf) for the number of amino acids in Figure
1. Moreover, the ML estimation is γ̂ML = 122.05.
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Figure 1: Fitting of the truncated DLD to the data of Table 1. The dashed line is the ecdf
of data and the solid line is the fitted cdf.

EXAMPLE 2. Let us collect the number of residues for 12 electron transports in
globular proteins (see [6,10]) as a real data set in the following Table:

Table 2
85 103 103 112 134 82
54 98 138 54 125 99

Figure 2: Fitting of the truncated DLD to the data of Table 2. The dashed line is the ecdf
of data and the solid line is the fitted cdf.

Again by K-S test, the p-value is 0.9544, which does not reject the adequacy of
the DLD for the number of residues. To do an informal goodness of fit test, let us
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plot the ecdf and fitted cdf of the number of residues in Figure 2. Meanwhile, the ML
estimation is γ̂ML = 450.315.

2.1 Figure of the Model

We present some Plots of the truncated DLD for different values of the scale parameter
γ in Figure 3.

Figure 3: Some Plots of the truncated DLD (2) for different values of the parameter γ.

2.2 Compare to the PD

We shall fit the data, in Examples 1-2, with the PD and also compare to the DLD from
biomolecular applications. For doing this, we consider the PD when b = 0.

EXAMPLE 3. Consider the data in Table 1. Then, using K-S test the p-value is
0.4775. Fitting of the truncated PD to the data of Table 1 is proposed in the Figure
4. Also, the ML estimation equals −0.12 which is not an acceptable estimation.

EXAMPLE 4. Let us have the data in Table 2. Then, using K-S test the p-value
is 0.6938. Fitting of the truncated PD to the data of Table 1 is given in the Figure 5.
The ML estimation equals −1.65 which is not acceptable.

COROLLARY 1. It is easily seen that the DLD fits data well with respect to the
PD. It seems that the DLD fits large data better than the PD. We notice that the tails
of the DLD are much heavy (more than the PD).
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Figure 4: Fitting of the truncated PD to the data of Table 1. The dashed line is the ecdf of
data and the solid line is the fitted cdf.

Figure 5: Fitting of the truncated PD to the data of Table 2. The dashed line is the ecdf of
data and the solid line is the fitted cdf.
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3 Regression Model

In this Section, we are going to consider regression model for the models (2) and (3),
and then investigate some properties for them.

3.1 DLD

Without loss of generality, we consider the following distribution received from (2):

p(x; γ) =
x−

3
2 exp(− γ

2x )

cγ
, x = 1, 2, ..., (4)

where cγ =
∑∞
y=1 y

− 3
2 exp

(
− γ
2y

)
. It is well-known that the left-side of the (4) may be

written as follows (if x = xi):

p(xi; γ) = F (xi, γ)− F (xi−1, γ), i = 1, 2, ..., n, (5)

where F (., .) is the theoretical cdf.
Taking logarithm from both sides of (4) and with regard to (5), we get

ln
(
F (xi, γ)− F (xi−1, γ)

)
= −3

2
lnxi −

( 1

2xi

)
γ − ln cγ . (6)

The left-side of (6), that is ln(F (xi, γ)− F (xi−1, γ)), depends on unknown parameter
γ and hence the relation (6) may not be used for a regression model. To overcome
this problem (compare with the used method based on sample characteristic function
by Koutrouvelis [9]), assuming Fn(x) = 1

n

∑n
i=1 I(Xi ≤ x) is the ecdf, I(.) is indicator

function, then for large n we have,

V ar(Fn(xi)−Fn(xi−1)) =
1

n
[F (xi)−F (xi−1)] · [1−F (xi)+F (xi−1)], i = 1, ..., n, (7)

which turns out the mean square consistency of (Fn(xi) − Fn(xi−1)) for (F (xi, γ) −
F (xi−1, γ)). Note that (compare to [9])

Fn(xi) =
1

n
(ν1 + ν2 + ...+ νi),

where νi =
∑n
j=1 I(xi−1 < Xj ≤ xi), i = 1, ..., n. By (6) and (7), we conclude that

ui = ln
(
Fn(xi)− Fn(xi−1)

)
+
3

2
lnxi = −

( 1

2xi

)
γ + θ,

where θ = − ln cγ .
Now it is possible ([9,12]) to suggest the estimation γ by regressing ui = θ − 1

2xi
γ

on 1
2xi

for the following model

ui = θ − 1

2xi
γ + εi, (8)



D. Farbod 157

where εi, i = 1, 2, ..., n, are independent identically distributed with N(0, σ2) and also
x = (x1, ..., xn) is non-random sample (regressor). Using (8) the parameter γ can be
estimated (without loss of generality and compare to [9], one of the parameter depends
to the other) by regressing ui on 1

2xi
.

Now, let us consider the LS estimator for the model (8). It is readily seen that the
unbiased LS estimator γ̂LS of the parameter γ in the model (8) is as follows:

γ̂LS = −

∑n
i=1

(
1
2xi
− 1

2x

)
·
(
ui − u

)
∑n
i=1

(
1
2xi
− 1

2x

)2 . (9)

From (9) and based on (8), we obtain the following corollary.

COROLLARY 2.

γ̂LS = −
3
2 ·
∑n
i=1

(
1
2xi
− 1

2x

)
·
(
lnxi − lnx

)
∑n
i=1

(
1
2xi
− 1

2x

)2 .

EXAMPLE 5. Let us have the real data set in Table 1 and 2, then the LS estimations
are, respectively,

γ̂LS = 169.73, γ̂LS = 240.57.

Now, we have the following theorem.

THEOREM 1. The LS estimator γ̂LS of the parameter γ is

(i) asymptotically normal;

(ii) consistent in a weak sense, i.e. γ̂LS
P−→ γ, as n −→∞;

(iii) best unbiased linear (by observations) estimator.

PROOF. To demonstrate asymptotic normality and consistency of the LS estimator
γ̂LS , it suffi ces to show that V arγ [γ̂LS ] < ∞ and V arγ [γ̂LS ] −→ 0 when n −→ ∞,
respectively, which are met obviously.

In order to establish that γ̂LS is the best unbiased linear estimator, firstly, it is
readily seen that γ̂LS is an unbiased estimator, that is Eγ [γ̂LS ] = γ. Then, optimality
(minimal variance in the class of all linear unbiased estimators) follows by the well-
known Gauss-Markov Theorem (see, for example, [8]). In other words, under the
following conditions (are satisfied obviously):

∗ Eγ(εi) = 0 for all observations.

∗ V arγ(εi) = σ2 <∞, so-called "homoskedasticity" condition.

∗ Covγ(εi, εj) = 0, ∀i 6= j the error terms are uncorrelated.

∗ Xi is deterministic constant.
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It turns out the LS estimator γ̂LS is the best unbiased linear estimator for the parameter
γ (εi, i = 1, 2, ..., n, are residuals or errors).

COROLLARY 3. For the regression model (8), the statistic

σ̂2n =
1

n− 2

n∑
i=1

ε2i

is unbiased estimator of σ2 and χ2n−2
d
= (n − 2) σ̂

2
n

σ2 , i.e. the statistic χ
2
n−2 has χ

2-
distribution with n− 2 degree of freedom.

REMARK 1. This results (in Section 3) may be used for interval estimations and
statistical hypothesis testing with regard to the parameters of the model.

REMARK 2. The above mentioned regression model can not be built for the PD
model. On the other hand, if we consider this method for the PD then it turns out
that the LS estimator ρ̂LS always is equal to 0.

3.2 PD

As we said in Remark 2, the above regression model can not be formed for the PD.
So, we need to propose other method (say second method) for constructing a regression
model. To do this, let ρ̂ML be the ML estimator of the ρ. It is well-known that the

ML estimator is a consistent estimator, i.e. ρ̂ML
P−→ ρ. From the well-known property

(see, for example, [2]) it follows that for large n,

ln f(x; ρ̂ML)
P−→ ln f(x; ρ).

Therefore (again compare to used method by Koutrouvelis [9]) the regression model is
constructed when b = 0 as follows

zi = η − (lnxi)ρ+ εi,

where zi = ln f(x; ρ̂ML), η = − ln
∑∞
y=1 y

−ρ and εi ∼ N(0, σ2), i = 1, 2, ..., n.
Based on second method, the LS estimator is:

ρ̂LS = −
∑n
i=1(lnxi − lnx)(zi − z)∑n

i=1(lnxi − lnx)2
. (10)

By (10), we obtain that
ρ̂LS = ρ̂ML.

COROLLARY 4. The LS estimator ρ̂LS is consistent, asymptotically normal and
best unbiased linear estimator for the shape parameter ρ.

As we saw in Examples 3 and 4, the data in Table 1 and 2 do not give us acceptable
ML estimations for the shape parameter ρ. So, it is needed to propose another data
for the model PD. We have the following.
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EXAMPLE 6. Consider the data x = 7, 8, 2, 2, 4, 3, 4, 9, 1, 15, 10, 1, 11, 200, 21, then
ρ̂LS = ρ̂ML = 1.21 (here, the p-value is 0.2505).

COROLLARY 5. The second method can be also considered for the scale parameter
γ of the DLD. In other words, based on second method we have γ̂LS = γ̂ML.

4 Conclusions

In this paper we have considered the DLD and PD models. Two real data sets have
given for fitting of this frequency distributions in order to model phenomena arising
in bioinformatics. It has been seen that the DLD fits such data well with respect to
the PD. Note that all of computations and fitting of the models have been done by
statistical software "R".
In Section 3, we have proposed two methods for constructing linear regression mod-

els with respect to the corresponding parameters and followed by the LS estimators
have been obtained. We notice that in the second method the LS and ML estimators
are the same.
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