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Abstract

In this work, we give weaker conditions, guarantee the existence and the
uniqueness of the solution of the Hammerstein to integral equation in the L2 space.
Also we present assumptions such that the successive approximation converges
almost everywhere to the exact solution. Finally, we treat numerical examples to
confirm these results.

1 Introduction

Various applied problems arising in mathematical physics and control theory lead to the
Hammerstein integral equations [1, 3, 5, 12], where we find this one frequently in many
applied areas, which include engineering, mechanics, potential theory and electrostatics
[2, 4, 6]. Also this type of equations occur in scattering and radiation of surface water
wave, where due to the Green’s function we can transform any ordinary differential
equation of the second order with boundary conditions into an Hammerstein integral
equation of the general form

ϕ(t0) =

∫ 1

0

k(t, t0)l(t, ϕ(t))dt, (1)

where k(t, t0) is a map from [a, b]×[a, b], into R, l(t, ϕ(t)) a nonlinear map from [a, b]×R,
into R and the unknown ϕ(t) is defined on [a, b]. The equation (1) can be put in the
form of a nonlinear functional equation

ϕ+KLϕ(t) = 0,

with the linear and nonlinear mappings K and L respectively given by

Kψ(t0) =

∫ 1

0

k(t, t0)ψ(t)dt, Lϕ(t) = l(t, ϕ(t)).

In this work we ensure that under weaker conditions the Niemitskyi operator L is
well-defined on the space L2([a, b]) of functions on the interval [a, b], and that for each
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128 A Numerical Approach for Solution of Integral Equations

element ϕ of L2([a, b]), the superposition operator L lies in the same space L2([a, b]).
Also the linear operator K maps the space L2([a, b]) into itself and therefore the com-
position KL of the two operators is well-defined and maps L2([a, b]) into itself.

Let us recall that, the existence theorems for solutions of (1) with a kernel k(t, t0) ∈
L2([a, b]× [a, b]) were proved in the papers [7, 11]. Obviously, in this paper the kernel
k(t, t0) is not necessary integrable in L2([a, b]× [a, b]).

2 Main Results

In this section, we present our main results.

THEOREM 1. Suppose that the functions k(t, t0) and l(t, ϕt)) satisfy the following
conditions:

(A1) The kernel k(t, t0) is measurable on [a, b]× [a, b] and such that(∫ b

a

|k(t, t0)|σ dt0

) 1
σ

≤M1, for all t ∈ [a, b],

where σ = 1 + α, with 0 < α < 1.

(A2) The kernel k(t, t0) is measurable on [a, b]× [a, b] and such that(∫ b

a

|k(t, t0)|1−α dt
) 1
1−α
≤M2, for all t0 ∈ [a, b].

(A3) The function l(t, ϕ(t)) is a nonlinear map from [a, b] × R, into R satisfying the
Carathéodory condition and such that

|l(t, ϕ(t))| ≤ a0(t) + b0 |ϕ(t)| ,

where a0(t) ∈ L2([a, b], R) and b0 > 0.

Then the operator

Aϕ(t0) =

∫ b

a

k(t, t0)l(t, ϕ(t))dt

is a map from L2 into L2.

PROOF. From the condition (A3), we can write

|l(t, ϕ(t)|2 ≤ (|a0(t)|+ b0 |ϕ(t)|)2

and therefore

‖(t, ϕ(t)‖2 =
(∫ b

a

|l(t, ϕ(t)|2 dt
) 1
2

≤
(∫ b

a

(|a0(t)|+ b0 |ϕ(t)|)2 dt
) 1
2

.
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Using Minkowski’s inequality, it comes

‖(t, ϕ(t)‖2 ≤
(∫ b

a

|a0(t)|2
) 1
2

+

(∫ b

a

b20 |ϕ(t)|
2

) 1
2

≤ ‖a0(t)‖2 + b0 ‖ϕ(t)‖2 .

Hence the operator l(t, ϕ(t)) is a continuous element of L2([a, b],R) [9]. However, on
the space L2([a, b],R) we consider the operator

Aϕ(t0) =

∫ b

a

k(t, t0)l(t, ϕ(t))dt.

From [3], we have

|Aϕ(t0)| =

∣∣∣∣∣
∫ b

a

k(t, t0)l(t, ϕ(t)dt

∣∣∣∣∣ ≤
∫ b

a

|k(t, t0)l(t, ϕ(t)| dt

=

∫ b

a

(
|k(t, t0)|σ |l(t, ϕ(t)|2

) 1
2 |k(t, t0)|1−

σ
2 dt

≤
(∫ b

a

|k(t, t0)|σ |l(t, ϕ(t)|2 dt
) 1
2
(∫ b

a

|k(t, t0)|1−α dt
) 1
2

,

|Aϕ(t0)| ≤M
(1−α)
2

2

(∫ b

a

|k(t, t0)|σ |l(t, ϕ(t)|2 dt
) 1
2

,

or again,

|Aϕ(t0)|2 ≤

M (1−α)
2

2

(∫ b

a

|k(t, t0)|σ |l(t, ϕ(t)|2 dt
) 1
2


2

,

(∫ b

a

|Aϕ(t0)|2 dt0

) 1
2

≤ M
(1−α)
2

2

(∫ b

a

∫ b

a

|k(t, t0)|σ |l(t, ϕ(t)|2 dtdt0

) 1
2

≤ M
(1−α)
2

2

(∫ b

a

|k(t, t0)|σ dt0

) 1
2
(∫ b

a

|l(t, ϕ(t)|2 dt
) 1
2

,

‖Aϕ(t0)‖2 ≤M
(1−α)
2

2 M
σ
2
1 ‖l(t, ϕ(t)‖2 .

Hence, the operator Aϕ(t0) is well defined from L2 to L2.

We present now the theorem of the existence and uniqueness of the L2-solution of
the equation (1).

THEOREM 2. Suppose that the functions k(t, t0) and l(t, ϕt)) satisfy the following
conditions:
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(B1) The kernel k(t, t0) belongs to the space L2 for all t0 ∈ [a, b],

(∫ b

a

|k(t, t0)|2 dt
) 1
2

≤ N(t0) for t0 ∈ [a, b].

(B2) The function l(t, ϕ(t)) belongs to the space L2 for all t ∈ [a, b],

(∫ b

a

|l(t, ϕt))|2 dt
) 1
2

≤ C

and satisfying the Lipschitz condition

|l(t, ϕ2(t))− l(t, ϕ1(t))| ≤ L(t) |ϕ2(t)− ϕ1(t)| ,

for all t ∈ [a, b].

Then the successive approximation

ϕn+1(t0) =

∫ b

a

k(t, t0)l(t, ϕn(t))dt,

converges almost everywhere to the solution of the equation (1) provided∫ b

a

L2(t)N2(t)dt = R2 < 1.

PROOF. For this method we put ϕ0(t) as an identically null function and succes-
sively

ϕn+1(t0) =

∫ b

a

k(t, t0)l(t, ϕn(t))dt, n = 0, 1, 2, ...,

and therefore, we obtain

∣∣ϕn+1(t0)− ϕn(t0)∣∣ ≤ ∫ b

a

|k(t, t0)|
∣∣l(t, ϕn(t))− l(t, ϕn−1(t)∣∣ dt,

∣∣ϕn+1(t0)− ϕn(t0)∣∣ ≤ ∫ b

a

|k(t, t0)|L(t)
∣∣ϕn(t)− ϕn−1(t)∣∣ dt,

≤
(∫ b

a

|k(t, t0)|2 dt
) 1
2
(∫ b

a

L2(t)
∣∣ϕn(t)− ϕn−1(t)∣∣2 dt

) 1
2

,

∣∣ϕn+1(t0)− ϕn(t0)∣∣2 ≤ N2(t0)

∫ b

a

L2(t)
∣∣ϕn+1(t)− ϕn(t)∣∣2 dt, (2)
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using the condition ϕ0(t) = 0, we get

|ϕ1(t0)|
2 ≤ N2(t0)

(∫ b

a

|l(t, 0)|2 dt
)
= C2N2(t0)

and from (2), it comes

|ϕ2(t0)− ϕ1(t0)|
2 ≤ N2(t0)

∫ b

a

L2(t)(C2N2(t))dt = C2N2(t0)R
2,

|ϕ3(t0)− ϕ2(t0)|
2 ≤ N2t(0)

∫ b

a

L2(t)(C2N2(t)R2)dt = C2N2(t0)R
4,

more generally ∣∣ϕn+1(t0)− ϕn(t0)∣∣2 ≤ C2N2(t0)R
2n

or again after simplification∣∣ϕn+1(t0)− ϕn(t0)∣∣ ≤ CN(t0)Rn.
This expression gives that the sequence ϕn(t0) taken by the series

ϕ1(t0) + (ϕ2(t0)− ϕ1(t0)) + · · ·+ (ϕn+1(t0)− ϕn(t0)) + . . . ,

has the majorant
CN(t0)(1 +R+R

2 + · · ·+Rn + ...).
Naturally, this series converges. Hence the sequence ϕn(t0) converges to the solution
of the equation (1).

3 Numerical Experiments

In this section we describe some of the numerical experiments performed in solving the
Hammerstein integral equations (1). In all cases, the interval is [0, 1] and we chose the
right hand side f(t) in such way that we know the exact solution. This exact solution
is used only to show that the numerical solution obtained with the method is correct
[5, 9, 11].

In each table, ϕ represents the given exact solution of the Hammerstein equation and
ϕ̃ corresponds to the approximate solution of the equation produced by the iterative
method.

EXAMPLE 1. Consider the Hammerstein integral equation

ϕ(t0)−
∫ 1

0

4tt0 + π sin(πt)

(ϕ(t))2 + t2 + 1
dt = sin

(π
2
t0

)
− 2t0 ln(3),

where the function f(t0) is chosen so that the solution ϕ(t) is given by

ϕ(t) = sin
(π
2
t
)
.
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The approximate solution ϕ̃(t) of ϕ(t) is obtained by the successive approximation
method.

Points of t Exact solution Approx solution Error
0.000000 0.000000e+000 0.000000e+000 0.000000e+000
0.200000 3.090170e-001 3.090018e-001 1.522598e-005
0.400000 5.877853e-001 5.877548e-001 3.045196e-005
0.600000 8.090170e-001 8.089713e-001 4.567793e-005
0.800000 9.510565e-001 9.509956e-001 6.090391e-005

Table 1. The exact and approximate solutions of example 1 in some arbitrary points.

EXAMPLE 2. Consider the Hammerstein integral equation

ϕ(t0)−
∫ 1

0

t0(ϕ(t))
3tdt =

1

t20 + 1
− 3

16
t0,

where the function f(t0) is chosen so that the solution ϕ(t) is given by

ϕ(t) =
1

t2 + 1
.

The approximate solution ϕ̃(t) of ϕ(t) is obtained by the successive approximation.

Points of t Exact solution Approx solution Error Error [2]
0.000000 1.000000e+000 1.000000e+000 0.000000e+000 0.000000e+000
0.200000 9.615385e-001 9.615348e-001 3.642846e-006 1.194620e-004
0.400000 8.620690e-001 8.620617e-001 7.285693e-006 2.389660e-004
0.600000 7.352941e-001 7.352832e-001 1.092854e-005 3.581180e-004
0.800000 6.097561e-001 6.097415e-001 1.457139e-005 4.780980e-004

Table 2. The exact and approximate solutions of example 2 in some arbitrary points,
and the error compared with the ones treated in [2].

EXAMPLE 3. Consider the Hammerstein integral equation

ϕ(t0)−
1

5

∫ 1

0

cos(πt0) sin(πt)(ϕ(t))
3dt = sin(πt0),

where the function f(t0) is chosen so that the solution ϕ(t) is given by

ϕ(t) = sin(πt) +
20−

√
391

3
cos(πt).

The approximate solution ϕ̃(t) of ϕ(t) is obtained by the successive approximation.
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Points of t Exact solution Approx solution Error Error [1]
0.000000 7.542669e-002 7.542669e-002 2.498002e-016 5.537237e - 15
0.200000 6.488067e-001 6.488067e-001 2.220446e-016 4.551914e - 15
0.400000 9.743646e-001 9.743646e-001 1.110223e-016 1.776356e - 15
0.600000 9.277484e-001 9.277484e-001 1.110223e-016 1.776356e - 15
0.800000 5.267638e-001 5.267638e-001 2.220446e-016 4.551914e - 15

Table 3. The exact and approximate solutions of example 3 in some arbitrary points,
and the error compared with the ones treated in [1].

EXAMPLE 4. Consider the Hammerstein integral equation

ϕ(t0)−
∫ 1

0

sin(t+ t0) ln(ϕ(t))dt = exp(t0)− 0.382 sin(t0)− 0.301 cos(t0), 0 ≤ t0 ≤ 1,

where the function f(t0) is chosen so that the solution ϕ(t) is given by

ϕ(t) = exp(t).

The approximate solution ϕ̃(t) of ϕ(t) is obtained by the successive approximation.

Points of t Exact solution Approx solution Error Error [5]
0.000000 1.000000e+000 1.000195e+000 1.953229e-004 0.000000e+000
0.200000 1.221403e+000 1.221559e+000 1.567282e-004 1.940000e-004
0.400000 1.491825e+000 1.491937e+000 1.118852e-004 5.410000e-004
0.600000 1.822119e+000 1.822181e+000 6.258175e-005 3.360000e-004
0.800000 2.225541e+000 2.225552e+000 1.078332e-005 2.890000e-004

Table 4. The exact and approximate solutions of example 4 in some arbitrary points,
and the error compared with the ones treated in [5].

4 Conclusion

In this work we remark the convergence of the successive approximation method to
the exact solution with a considerable accuracy for the Hammerstein integral equation
under conditions of the theorems cited above. This numerical results show that the
accuracy improves with increasing of the number of iterations. Finally, we confirm that,
the theorems cited above lead us to the good approximation of the exact solution.
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