
Applied Mathematics E-Notes, 14(2014), 29-36 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Some Remarks On Block Group Circulant Matrices∗

Pamini Thangarajah†, Petr Zizler ‡

Received 29 November 2013

Abstract

Let C denote a block group circulant matrix over a finite non-Abelian group
G. We prove results concerning the spectral properties of the matrix C. We give
an example of the spectral decomposition of a block group circulant matrix over
the symmetric group S3.

1 Introduction

Block circulant matrices over the cyclic group Zn have been well studied, see [11]
for example. In our paper we will consider the setting where the cyclic group Zn is
replaced by a non-Abelian finite group G. Some of the framework needed for the block
group circulant case needs to be taken from the group circulant matrix case that was
discussed in [13]. Let l2(G) denote the finite-dimensional Hilbert space of all complex-
valued functions, with the usual inner product, for which the elements of G form the
(standard) basis. We assume that this basis (G) is ordered and make the natural
identification with Cn, where |G| = n, as a linear space.

Let C[G] be the group algebra of complex-valued functions on G. Consider ψ =
(c0, c1, . . . , cn−1) ∈ Cn and identify the function ψ with its symbol Ψ = c01 + c1g1 +
· · · cn−1gn−1 ∈ C[G].

DEFINITION. Let Ĝ be the set of all (equivalence classes) of irreducible represen-
tations of the group G and let r denote the cardinality of Ĝ. Let ρ ∈ Ĝ denote an
irreducible representation of G of degree j and let φ ∈ Cn. Then the Fourier transform
of φ at ρ is the j × j matrix

φ̂(ρ) =
∑
s∈G

φ(s)ρ(s−1).

Let ψ and φ be two elements in Cn. A G-convolution of ψ and φ is defined by the
following action

(ψ ∗ φ)(σ) =
∑
τ∈G

ψ(τ)φ(τ−1σ) for σ ∈ G.
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We have a natural identification ψ∗φ 7→ ΨΦ understood with respect to the induced
group algebra multiplication. Moreover, the Fourier transform turns convolution into
(matrix) multiplication ψ̂ ∗ φ = ψ̂φ̂. Thus we have a non-Abelian version of the classical
z transform. For further references on this subject we refer the reader to [1, 2, 3, 4, 5,
6, 7, 9, 10, 12].
The Fourier transform gives us a natural isomorphism C[G]⇒M(Ĝ) where

M(Ĝ) = Md1×d1(C)⊕Md2×d2(C)⊕ · · · ⊕Mdr×dr (C)

with d21 + d22 + · · · + d2r = n. A typical element of Cn is a complex-valued function
ψ = (c0, c1, . . . , cn−1) and the typical element of M(Ĝ) is the direct sum of Fourier
transforms

φ̂(ρ1)⊕ φ̂(ρ2)⊕ · · · ⊕ φ̂(ρr).

Cyclic circulant matrices are normal (hence diagonalizable) and the Fourier basis
of eigenvectors, the complex exponentials, are fixed and independent of the function ψ.
In the Abelian setting the Fourier transform is a unitary linear transformation (proper
scaling required). In the non-Abelian setting we recapture this property if we define
the right inner product on the space M(Ĝ). Let φ ∈ Cn and define a function φj by
the following action

φj(s) =
dj
|G| tr

(
ρj(s)φ̂(ρj)

)
for s ∈ G.

Note φ =
∑r
j=1 φj which constitutes the inverse Fourier transform. We are able to

decompose a function φ into a sum of r functions which is the number of conjugacy
classes of G.

DEFINITION. Let A = (ai,j) be a m×n matrix. The Frobenius norm of A is given
by

||A||2F =

m∑
i=1

n∑
j=1

|ai,j |2.

If we let φj be given as above, then we have

〈φi, φj〉 =
dj
|G| ||φ̂(ρj)||2F δij .

and if we let φ ∈ Cn then

||φ||2 =
1

|G|

r∑
j=1

dj ||φ̂(ρj)||2F .

Thus, with proper scaling, the Fourier transform is a unitary transformation from Cn

onto
(
M(Ĝ), •F

)
.

In the case of a group circulant matrix C = CG(ψ) over a non-Abelian group G its
eigenvectors need not be orthogonal nor are ψ independent in general. Moreover, the
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matrix CG(ψ) need not be diagonalizable, an example was given in [13] with G = D4,
the dihedral group of order 4. The group D4 is a semi-direct product of the cyclic group
Z4 and the cyclic group Z2. Let Zn =< r > and Z2 =< s >. We have rn = s2 = 1 and
rjs = sr−j for all j ∈ {0, 1, . . . , n−1}. The matrix C corresponding to the convolution
operator induced by the symbol Ψ = r + rs is not diagonalizable.

Eigenvalue analysis for group circulant matrices was studied in [8] and the eigen-
vector decomposition in [13]. In the Fourier domain the eigenvalue problem for a group
circulant matrix translates to AB = λB where λ is an eigenvalue of A = ψ̂(ρj) and
the columns of B are the corresponding eigenvectors (any collection including the zero
vector).
Assume the matrix ψ̂(ρj) is diagonalizable for each j with dj eigenvalues (possibly

counting multiplicities). Let σ
(
ψ̂(ρj)

)
= {λ1,j , . . . , λdj ,j}. Consider an (unital) eigen-

vector vλs,j of ψ̂(ρj) corresponding to the eigenvalue λs,j with s ∈ {1, . . . , dj}. In the
case of a multiple eigenvalue we choose linearly-independent (preferably orthogonal)
unital eigenvectors. To obtain the eigenvector decompositon of C we review some of
the developments in [13].
Define a sequence of Fourier (orthogonal) eigenvectors in M(Ĝ)

v̂p(λs,j) = (0)d1×d1 ⊕ · · · ⊕
(

0 · · · 0 vλs,j 0 · · · 0
)
⊕ · · · ⊕ (0)dr×dr

where the unital eigenvector vλs,j is located in the p-th column with p ∈ {1, . . . , dj}.
The orthogonality properties are respected in the space l2(Cn) upon taking the

inverse Fourier Trasform which is unitary. Namely, upon taking the inverse Fourier
transform of the vectors {v̂p(λs,j)} we obtain eigenvectors

{vp(λs,j)} for p, s ∈ {1, 2, . . . , dj} and j ∈ {1, 2, . . . , r}.
For a given λs,j the eigenvectors {vp(λs,j) | p ∈ {1, 2, . . . , dj}} are pairwise mutually-
orthogonal. Moreover vp(λs,i) ⊥ vq(λt,j) for i 6= j and any choice of p, q and s, t.
The group circulant matrix CG(ψ) admits pairwise mutually-orthogonal, ψ inde-

pendent, d2j -dimensional, C-invariant subspaces

Vj = span{vp(λs,j) | p ∈ {1, . . . , dj}, s ∈ {1, . . . , dj}}
= span{ρj(k, l) | k, l ∈ {1, . . . , dj}}

where j ∈ {1, 2, . . . , r} and the action of the function ρj(k, l) is seen as ρj(k, l)(s) =
ρj(s)(k, l) for s ∈ G. This decomposition could be suffi cient as far as the response
of G-convolution by ψ on functions in Cn is concerned. The functions {ρj(k, l)} are
the generalizations of the complex exponentials (cyclic case) as they are mutually-
orthogonal though not necessarily eigenvectors. The values {||ψ̂(ρj)||} could act as
frequency responses.

2 Main Results: Block Group Circulant Matrices

Define a vector space Ck[G] consisting of elements

v = v01 + v1g1 + · · · vn−1gn−1
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where vi = (v1i, v1i, . . . , vki)
T ∈ Ck. Note that Ck[G] is not an algebra as we do not

have multiplication defined. We can identify the element v with

(v10g1 + · · ·+ v1n−1gn−1)⊕ · · · ⊕ (vk0g1 + · · ·+ vkn−1gn−1)

so that v = v1 ⊕ · · · ⊕ vk with vs ∈ C[G]. Each vs results from collecting the same
entries in v, ranging from 1 to k. Thus Ck[G] can be identified with k copies of C[G].
We refer to this as the block stacking (with respect to entry position). Undoing this
operation is referred to as block merging. To give an example we let G = Z2 with the
elements {g0, g1} where g0 is the identity element and g21 = g0. Consider

v =

(
1
2

)
g0 +

(
3
4

)
g1 = (1 , 2 , 3 , 4)T .

Then v0 = g0 + 3g1 and v1 = 2g0 + 4g1. Now define a group algebra Ck×k[G] over the
group G with coeffi cients k×k matrices over the complex numbers. The group algebra
Ck×k[G] consists of elements

Ψ = c01 + c1g1 + · · · cn−1gn−1

where ci are k×k matrices over the complex numbers. The element Ψ can be identified
with a k × k matrix [ψts]

k
t,s=1 where the entry ψts is an element of the group algebra

C[G]. The matrix Ψ is obtained by collecting likewise entries in the symbol Ψ similar
to the vector block stacking.
Let Ψ ∈ Ck×k[G] and v ∈ Ck[G]. The kn × kn block group circulant matrix C is

induced by the following action
w = Ψv

where v ∈ Ck[G], w ∈ Ck[G] and Ψ ∈ Ck×k[G]. To give an example let G = Z2 as
before. Consider

Ψ =

 1 2
3 4

 g0 +

 5 6
7 8

 g1.

Then ψ1,1 = g0 + 5g1, ψ1,2 = 2g0 + 6g1, ψ2,1 = 3g0 + 7g1 and ψ2,2 = 4g0 + 8g1. Recall

{ρj}rj=1 denote the irreducible representations ofG. Let ψ̂ts(j) be the Fourier transform
(dj × dj matrix) of ψts evaluated at ρj , where ρj is the irreducible representation of
the group G. Similarly, v̂i(j) is the Fourier transform (dj × dj matrix) of vi evaluated
at ρj .
The action of the block group circulant matrix C can now be lifted to the Fourier

domain and can be seen as the following action

⊕rj=1


ψ̂11(j) ψ̂12(j) · · · ψ̂1k(j)

ψ̂21(j) ψ̂22(j) · · · ψ̂2k(j)
...

...
...

...
ψ̂k1(j) ψ̂k2(j) · · · ψ̂kk(j)




v̂1(j)
v̂2(j)
...

v̂k(j)

 = ⊕rj=1Ψ̂jv̂.
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We will assume the matrix C is diagonalizable. This assumption is made for simplicity
reasons namely a notational one, as an extension to non-diagonalizable case can be
readily accomplished.

THEOREM 1. Let C be a diagonalizable block group circulant matrix over a finite
non-Abelian group G. Then the eigenvalues of C are the eigenvalues {λm,j}, each with
multiplicity dj , with m ∈ {1, 2 . . . , kdj} and j ∈ {1, 2, . . . , r}, of the matrices {Ψj}.
Let λm,j be given. Then we have dj corresponding (linearly-independent though not
necessarily orthogonal) eigenvectors up(λm,j) for p ∈ {1, 2, . . . , dj}. These eigenvectors
have the following properties. Let p be given. Perform the block stacking of up(λm,j).
Then the Fourier transform of each block usp(λm,j), s ∈ {1, 2, . . . , k} is given by

ûsp(λm,j) = (0)d1×d1 ⊕ · · · ⊕
(

0 · · · 0 usλm,j
0 · · · 0

)
⊕ · · · ⊕ (0)dr×dr

where usλm,j
is the sth block (top to bottom) of the eigenvector uλm,j

of the matrix
Ψj with eigenvalue λm,j . The vector usλm,j

is in the pth column of the dj × dj matrix
above.

PROOF. It is clear from the preceding discussion that the eigenvalues of the matrix
C are the eigenvalues of the matrices {Ψj}rj=1 counting multiplicities. We list these as
{λm,j} with m ∈ {1, 2 . . . , kdj} and j ∈ {1, 2, . . . , r}. The eigenvectors of the matrix
C can be obtained as follows. Let j be fixed. Let uλm,j be an unital eigenvector of the
matrix Ψ̂j . Split the vector uλm,j

into k parts (top to bottom) and consider a block
usλm,j

, a dj × 1 vector. Define a vector

ûsp(λm,j) = (0)d1×d1 ⊕ · · · ⊕
(

0 · · · 0 usλm,j
0 · · · 0

)
⊕ · · · ⊕ (0)dr×dr

where usλm,j
is located in the pth column with some fixed choice of p ∈ {1, . . . , dj}

the same for all the k blocks. Let {usp(λm,j)} be the vectors in Cn whose Fourier
transform is the given Fourier sequence {ûsp(λs,j)} for each s ∈ {1, 2, . . . , k}. We
form the eigenvector up(λm,j) of C for the eigenvalue λm,j via block merging using the
blocks {usp(λm,j)}.
For i 6= j we have

up(λm,j) ⊥ uq(λt,i) for all p, q,m, t.

However, unlike the group circulant case, the eigenvector up(λm,j) need not be
orthogonal to uq(λm,j) for p 6= q. The group circulant matrix CG(ψ) admits mutually-
orthogonal, ψ independent, kd2j -dimensional, C-invariant subspaces

Uj = span{up(λm,j) | p ∈ {1, . . . , dj},m ∈ {1, . . . , kdj}}
= span{ρij(k, l) | k, l ∈ {1, . . . , dj}, i ∈ {1, 2, . . . , k}}

for j ∈ {1, 2, . . . , r}. The function ρij(k, l) is created as follows. Consider a function
ρj(k, l) acting as ρj(k, l)(g) = ρj(g)(k, l) for g ∈ G. Then choose a block location
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i ∈ {1, 2, . . . , k} and merge ρj(k, l) from the location i with the k − 1 blocks of zeros
of size n × 1 to create a vector of size kn × 1. Note that the functions ρij(k, l) are
mutually-orthogonal though not necessarily eigenvectors.

3 Example

We now consider an example of a block group circulant matrix C over the symmetric
group S3. The group S3 consists of elements

g0 = (1) ; g1 = (12) ; g2 = (13) ; g3 = (23) ; g4 = (123) ; g5 = (132).

We have three irreducible representations, two of which are one-dimensional, ρ1 is the
identity map, ρ2 is the map that assigns the value of 1 if the permutation is even and
the value of −1 if the permutation is odd. Finally, we have ρ3 defined by the following
assignment

g0 7→

 1 0
0 1

 ; g1 7→

 −1 1
0 1

 ; g2 7→

 0 −1
−1 0

 ; g3 7→

 1 0
1 −1



g4 7→

 0 −1
1 −1

 ; g5 7→

 −1 1
−1 0

 .
Consider the block group circulant matrix induced by the symbol

Ψ = c0g0 + c1g1 with c0 =

 1 0
0 2

 and c1 =

 0 1
0 0

 .

The induced block circulant matrix is given by (respecting the order of elements)

c0 c1 0 0 0 0
c1 c0 0 0 0 0
0 0 c0 0 c1 0
0 0 0 c0 0 c1
0 0 c1 0 c0 0
0 0 0 c1 0 c0


.

The matrices Ψ̂(j) are given by

Ψ̂(1) =

 1 1
0 2

 ; Ψ̂(2) =

 1 −1
0 2

 ; Ψ̂(3) =


1 0 −1 1
0 1 0 1
0 0 2 0
0 0 0 2

 .
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The eigenvalues of Ψ̂(1) are λ1,1 = 1 and λ2,1 = 2 with uλ1,1 = (1, 0)T and uλ2,1 =
(1, 1)T . We collect 2 corresponding eigenvectors of C (non-normalized)

u1(λ1,1) = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0)T

u1(λ2,1) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T .

Note that the above eigenvectors span the C-invariant subspace U1. The eigenvalues
of Ψ̂(2) are λ1,2 = 1 and λ2,2 = 2 with uλ1,2 = (1, 0)T and uλ2,2 = (1,−1)T . We collect
2 corresponding eigenvectors of C (non-normalized)

u1(λ1,2) = (1, 0,−1, 0,−1, 0,−1, 0, 1, 0, 1, 0)T

u1(λ2,2) = (1,−1,−1, 1,−1, 1,−1, 1, 1,−1, 1,−1)T .

Note that the above eigenvectors span the C-invariant subspace U2. The eigenvalues
of Ψ̂(3) are λ1,3 = λ2,3 = 1 with multiplicity 2, and λ3,3 = λ4,3 = 2 with multiplicity
2 as well. We have uλ1,3 = (1, 0, 0, 0)T , uλ2,3 = (0, 1, 0, 0)T , uλ3,3 = (1, 0,−1, 0)T

and uλ4,3 = (1, 1, 0, 1)T . As a result we collect 8 eigenvectors (non-normalized) of C
corresponding to these eigenvalues

u1(λ1,3) = (1, 0,−1, 0, 0, 0, 1, 0, 0, 0,−1, 0)T

u2(λ1,3) = (0, 0, 0, 0,−1, 0, 1, 0, 1, 0,−1, 0)T

u1(λ2,3) = (0, 0, 1, 0,−1, 0, 0, 0,−1, 0, 1, 0)T

u2(λ2,3) = (1, 0, 1, 0, 0, 0,−1, 0,−1, 0, 0, 0)T

u1(λ3,3) = (1,−1,−1, 1, 0, 0, 1,−1, 0, 0,−1, 1)T

u2(λ3,3) = (0, 0, 0, 0,−1, 1, 1,−1, 1,−1,−1, 1)T

u1(λ4,3) = (1, 0, 0, 1,−1,−1, 1, 0,−1,−1, 0, 1)T

u2(λ4,3) = (1, 1, 1, 1,−1, 0, 0,−1, 0,−1,−1, 0)T .

Note that the above eigenvectors span the C-invariant subspace U3. We will ex-
plain how we obtained u2(λ4,3). Consider λ4,3 = 2 and uλ4,3 = (1, 1, 0, 1)T , the cor-

responding eigenvector of Ψ̂(3). Form û12(λ4,3) by positioning (1, 1)T in the second

column and zero columns elsewhere. The inverse Fourier transform of û12(λ4,3) is

given by (1, 1,−1, 0, 0,−1). Next, form û22(λ4,3) by positioning (0, 1)T in the second

column and zeros elsewhere. The inverse Fourier transform of û22(λ4,3) is given by
(1, 1, 0,−1,−1, 0). Now we merge and obtain

u2(λ4,3) = (1, 1, 1, 1,−1, 0, 0,−1, 0,−1,−1, 0)T .

Observe that for i 6= j we have up(λm,j) ⊥ uq(λt,i) for all choices of p, q,m, t, but
for p 6= q up(λm,j) need not be orthogonal to uq(λm,j).
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