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Abstract

The purpose of this note is to give an alternative version of T. Katos proof on
the norm of oblique projections in a Hilbert space.

1 Introduction and Proof of Lemma

D. B. Szyld collected in [8] several proofs of the identity ‖P‖ = ‖I − P‖ for nontrivial
linear projections P on a Hilbert space, see also [7] and [2, Example 5.8]. It has found
numerous applications, see for instance [5, 3, 9, 1, 6]. We provide here a somewhat
simplified version of the proof given by T. Kato in [4, Lemma 4]. The difference is in
the choice of the vector y.

LEMMA. Let H be a Hilbert space. Let P : H → H be a linear idempotent
operator such that 0 6= P 2 = P 6= I. Then ‖P‖ = ‖I − P‖.
PROOF. Since P 2 = P and (I − P )2 = I − P , both norms are no less than one.

If ‖P‖= 1 =‖I − P‖, there is nothing to prove, so let x ∈ H be nonzero with, say,
α := ‖Px‖ / ‖x‖ > 1. Then y := α2x − Px is nonzero due to Py 6= 0. Moreover, the
identity α ‖(I − P )x‖ = ‖y‖ is easily seen by expanding the square of the norms. The
definition of y, the fact that P 2 = P , and this identity together yield

‖(I − P ) y‖=
∥∥α2x− α2Px∥∥ = α2 ‖(I − P )x‖ = α ‖y‖ .

Since x 6= 0 was arbitrary, as long as α > 1, we divide the latter identity by ‖y‖, and
take the supremum over all such x to obtain

‖I − P‖ ≥ sup
x

‖(I − P ) y‖
‖y‖ = sup

x
α = ‖P‖ ,

where y and α depend on x. Therefore, ‖I − P‖≥ ‖P‖ > 1. Swapping the roles of P
and I − P concludes the proof.
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