A Note On The Norm Of Oblique Projections*

Roman Andreev ${ }^{\dagger}$

Received 12 October 2013

Abstract

The purpose of this note is to give an alternative version of T. Katos proof on the norm of oblique projections in a Hilbert space.

1 Introduction and Proof of Lemma

D. B. Szyld collected in [8] several proofs of the identity $\|P\|=\|I-P\|$ for nontrivial linear projections P on a Hilbert space, see also [7] and [2, Example 5.8]. It has found numerous applications, see for instance $[5,3,9,1,6]$. We provide here a somewhat simplified version of the proof given by T. Kato in [4, Lemma 4]. The difference is in the choice of the vector y.

LEMMA. Let H be a Hilbert space. Let $P: H \rightarrow H$ be a linear idempotent operator such that $0 \neq P^{2}=P \neq I$. Then $\|P\|=\|I-P\|$.

PROOF. Since $P^{2}=P$ and $(I-P)^{2}=I-P$, both norms are no less than one. If $\|P\|=1=\|I-P\|$, there is nothing to prove, so let $x \in H$ be nonzero with, say, $\alpha:=\|P x\| /\|x\|>1$. Then $y:=\alpha^{2} x-P x$ is nonzero due to $P y \neq 0$. Moreover, the identity $\alpha\|(I-P) x\|=\|y\|$ is easily seen by expanding the square of the norms. The definition of y, the fact that $P^{2}=P$, and this identity together yield

$$
\|(I-P) y\|=\left\|\alpha^{2} x-\alpha^{2} P x\right\|=\alpha^{2}\|(I-P) x\|=\alpha\|y\|
$$

Since $x \neq 0$ was arbitrary, as long as $\alpha>1$, we divide the latter identity by $\|y\|$, and take the supremum over all such x to obtain

$$
\|I-P\| \geq \sup _{x} \frac{\|(I-P) y\|}{\|y\|}=\sup _{x} \alpha=\|P\|
$$

where y and α depend on x. Therefore, $\|I-P\| \geq\|P\|>1$. Swapping the roles of P and $I-P$ concludes the proof.

Acknowledgment. The author was supported by NSF grant 10-08397 and ONR grant 000141210318 during his stay at University of Maryland, USA. Comments on the preliminary manuscript by C. Pagliantini and L. Zikatanov are gratefully acknowledged; the anonymous referee helped improving the presentation, and pointed out additional references; reference [8] was pointed out to the author by F. J. Sayas.

[^0]
References

[1] C. Beattie, M. Embree and J. Rossi, Convergence of restarted Krylov subspaces to invariant subspaces, SIAM J. Matrix Anal. Appl., 25(2004), 1074-1109.
[2] A. Böttcher and I. M. Spitkovsky, A gentle guide to the basics of two projections theory, Linear Algebra Appl., 432(2010), 1412-1459.
[3] M. Eiermann and O. G. Ernst, Geometric aspects of the theory of Krylov subspace methods, Acta Numer., 10(2001), 251-312.
[4] T. Kato, Estimation of iterated matrices, with application to the von Neumann condition, Numer. Math., 2(1960), 22-29.
[5] T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
[6] V. Simoncini and D. B. Szyld, On the occurrence of superlinear convergence of exact and inexact Krylov subspace methods, SIAM Rev., 47(2005), 247-272.
[7] V. Simoncini and D. B. Szyld, On the field of values of oblique projections, Linear Algebra Appl., 433(2010), 810-818.
[8] D. B. Szyld, The many proofs of an identity on the norm of oblique projections, Numer. Algorithms, 42(2006), 309-323.
[9] J. Xu and L. Zikatanov, Some observations on Babuška and Brezzi theories, Numer. Math., 94(2003), 195-202.

[^0]: ${ }^{*}$ Mathematics Subject Classifications: 15A24, 47A30, 65N30.
 ${ }^{\dagger}$ RICAM, Austrian Academy of Sciences, Altenberger-Str.69, 4040 Linz, Austria. roman.andreev@oeaw.ac.at

