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Abstract
In this paper, we introduce (ψ,ϕ)-almost weakly contractive maps in G-metric

spaces and prove the existence of fixed points. Our Theorem 4 generalizes the
result of Aage and Salunke (Theorem 2, [1]). We also extend it to a pair of weakly
compatible maps and prove the existence of common fixed points. We provide
examples in support of our results.

1 Introduction and Preliminaries

The development of fixed point theory is based on the generalization of contraction
conditions in one direction or/and generalization of ambient spaces of the operator
under consideration on the other. Banach contraction principle plays an important role
in solving nonlinear equations, and it is one of the most useful results in fixed point
theory. In the direction of generalization of contraction conditions, in 1997, Alber
and Guerre-Delabriere [3] introduced weakly contractive maps which are extensions
of contraction maps and obtained fixed point results in the setting of Hilbert spaces.
Rhoades [16] extended this concept to metric spaces. In 2008, Dutta and Choudhury
[12] introduced (ψ,ϕ)-weakly contractive maps and proved the existence of fixed points
in complete metric spaces. In 2009, Doric [11] extended it to a pair of maps. For more
literature in this direction, we refer to Choudhury, Konar and Rhoades [9], Babu,
Nageswara Rao and Alemayehu [4], Sastry, Babu and Kidane [17], Babu and Sailaja
[5] and Zhang and Song [19]. In continuation to the extensions of contraction maps,
Berinde [7] introduced ‘weak contractions’ as a generalization of contraction maps.
Berinde renamed ‘weak contractions’as ‘almost contractions’in his later work [8]. For
more works on almost contractions and its generalizations, we refer to Babu, Sandhya
and Kameswari [6], Abbas, Babu and Alemayehu [2] and the related references cited
in these papers.
Throughout this paper, we denote R+ = [0,∞) and

Ψ = {ψ/ψ : R+ → R+ is continuous on R+, ψ is nondecreasing,
ψ(t) > 0 for t > 0, ψ(0) = 0} .
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In the metric space setting Dutta and Choudhury [12] introduced (ψ,ϕ)-weakly con-
tractive maps as follows:

DEFINITION 1 ([12]). Let (X, d) be a metric space. Let T : X → X be a map. If
there exist ψ,ϕ ∈ Ψ such that

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y))

for all x, y ∈ X, then T is said to be a (ψ,ϕ)-weakly contractive map.

Dutta and Choudhury [12] proved that every (ψ,ϕ)-weakly contractive map has a
unique fixed point in complete metric spaces. On the other hand, Berinde [7] introduced
‘weak contractions’as a generalization of contraction maps.

DEFINITION 2 ([7]). Let (X, d) be a metric space. A selfmap T : X → X is said
to be a weak contraction if there exist δ ∈ (0, 1) and L ≥ 0 such that for all x, y ∈ X,

d(Tx, Ty) ≤ δd(x, y) + Ld(y, Tx).

Berinde [7] proved that every weak contraction has a fixed point in complete metric
spaces and provided an example to show that this fixed point need not be unique. In
order to obtain the uniqueness of fixed point, Berinde [7] used the following condition:
there exist θ ∈ (0, 1) and L1 ≥ 0 such that

d(Tx, Ty) ≤ θd(x, y) + L1d(x, Tx) for all x, y ∈ X (1)

and proved that every weak contraction together with (1) has a unique fixed point in
complete metric spaces, and further posed the following problem: “Find a contractive
type condition different from (1), that ensures the uniqueness of fixed point of weak
contractions".
In this context Babu, Sandhya and Kameswari [6] answered the above problem by

introducing ‘condition (B)’as follows:

DEFINITION 3 ([6]). Let (X, d) be a metric space. A map T : X → X is said to
satisfy condition (B) if there exist 0 < δ < 1 and L ≥ 0 such that for all x, y ∈ X,

d(Tx, Ty) ≤ δd(x, y) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Babu, Sandhya and Kameswari [6] proved that every selfmap T of a complete
metric space satisfying condition (B) has a unique fixed point. On the other hand,
in the direction of generalization of ambient spaces, in 2005, Mustafa and Sims [15]
introduced a new notion namely generalized metric space called G-metric space and
studied the existence of fixed points of various types of contraction mappings in G-
metric spaces.

DEFINITION 4 ([15]). Let X be a nonempty set and let G : X3 → R+ be a
function satisfying:
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(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y) for all x, y ∈ X, with x 6= y,

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all variables) and,

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

Then the function G is called a generalized metric, or, more specially a G-metric on
X, and the pair (X,G) is called a G-metric space.

EXAMPLE 1 ([15]). Let (X, d) be a metric space. The mapping Gs : X3 → R+
defined by

Gs(x, y, z) = d(x, y) + d(y, z) + d(x, z)

for all x, y, z ∈ X is a G-metric and so (X,Gs) is a G-metric space.

EXAMPLE 2 ([15]). Let (X, d) be a metric space. The mapping Gm : X3 → R+
defined by

Gm(x, y, z) = max {d(x, y), d(y, z), d(x, z)}

for all x, y, z ∈ X is a G-metric and so (X,Gm) is a G-metric space.

EXAMPLE 3. Let X be a nonempty set. We denote the class of all real valued
bounded functions on X by B(X). For f ∈ B(X), we define

‖f‖ = sup {|f(x)| /x ∈ X} .

Then (B(X), ||.||) is a normed linear space. We define metric d on B(X) by d(f, g) =
‖f − g‖ for f, g ∈ B(X). Now we define generalized metric G on B(X) by

G(f, g, h) = ‖f − g‖+ ‖g − h‖+ ‖h− f‖

for all f, g, h ∈ B(X). Then clearly G is a generalized metric on B(X). The space
(B(X), G) is a generalized metric space.

DEFINITION 5 ([15]). Let (X,G) be a G-metric space and let {xn} be a sequence
of points of X. We say that {xn} is G-convergent to x if limn,m→∞G(x, xn, xm) = 0;
that is, for any ε > 0, there exists N ∈ N such that G(x, xn, xm) < ε for all n,m ≥ N .
We refer to x as the limit of the sequence {xn}.

PROPOSITION 1 ([15]). Let (X,G) be a G-metric space. Then for any x, y, z, a ∈
X we have that:

(1) if G(x, y, z) = 0, then x = y = z.

(2) G(x, y, z) ≤ G(x, x, y) +G(x, x, z).
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(3) G(x, y, y) ≤ 2G(y, x, x).

(4) G(x, y, z) ≤ G(x, a, z) +G(a, y, z).

(5) G(x, y, z) ≤ 2
3 (G(x, y, a) +G(x, a, z) +G(a, y, z)) .

PROPOSITION 2 ([15]). Let (X,G) be a G-metric space. Then the following
statements are equivalent:

(1) {xn} is G-convergent to x.

(2) G(xn, xn, x)→ 0 as n→∞.

(3) G(xn, x, x)→ 0 as n→∞.

DEFINITION 6 ([15]). Let X be a G-metric space. A sequence {xn} is called G-
Cauchy if given ε > 0, there is an N ∈ N such that G(xn, xm, xl) < ε for all n,m, l ≥ N ;
that is, if G(xn, xm, xl)→ 0 as n,m, l→∞.

PROPOSITION 3 ([15]). In a G-metric space X, the following two statements are
equivalent:

(1) The sequence {xn} is G-Cauchy.

(2) For every ε > 0, there exists N ∈ N such that G(xn, xm, xm) < ε for all n,m ≥ N.

DEFINITION 7 ([15]). A G-metric space X is said to be G-complete (or a complete
G-metric space) if every G-Cauchy sequence in X is G-convergent in X.

PROPOSITION 4 ([15]). Let X be a G-metric space. Then the function G(x, y, z)
is jointly continuous in all three of its variables.

PROPOSITION 5 ([15]). Every G-metric space X defines a metric space (X, dG)
by

dG(x, y) = G(x, y, y) +G(y, x, x) for all x, y ∈ X.

Mustafa, Obiedat and Awawdeh [14] proved the following result.

THEOREM 1 ([14]). Let (X,G) be a complete G-metric space, and let T : X → X
be a mapping satisfying one of the following conditions:

G(Tx, Ty, Tz) ≤ aG(x, y, z) + bG(x, Tx, Tx) + cG(y, Ty, Ty) + dG(z, Tz, Tz)

or
G(Tx, Ty, Tz) ≤ aG(x, y, z) + bG(x, x, Tx) + cG(y, y, Ty) + dG(z, z, Tz)

for all x, y, z ∈ X where 0 ≤ a + b + c + d < 1. Then T has a unique fixed point (say
u, i.e., Tu = u), and T is G-continuous at u.
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In 2011, Aage and Salunke [1] introduced weakly contractive maps in G-metric
spaces and proved the existence of fixed points in G-metric spaces.

DEFINITION 8. Let (X,G) be a G-metric space. Let T : X → X be a selfmap of
X. T is said to be a weakly contractive map in G if, there exists ϕ ∈ Ψ such that

G(Tx, Ty, Tz) ≤ G(x, y, z)− ϕ(G(x, y, z)) for each x, y, z ∈ X. (2)

THEOREM 2 ([1]). Let (X,G) be a complete G-metric space and let T : X → X
be a weakly contractive map in G. Then T has a unique fixed point in X.

DEFINITION 9 ([10]). Let f and g be two selfmaps on a G-metric space (X,G).
The mappings f and g are said to be compatible if limn→∞G (fgxn, gfxn, gfxn) = 0
whenever {xn} is a sequence in X such that limn→∞ fxn = limn→∞ gxn = z for some
z ∈ X.

DEFINITION 10 ([10,13]). Two maps f and g on a G-metric space (X,G) are said
to be weakly compatible if they commute at their coincidence point.

Here we note that every pair of compatible maps is weakly compatible but its
converse need not be true (Example 1.4, [10]). Shatanawi [18] proved the following
common fixed point theorem for a pair of weakly compatible maps.

THEOREM 3 ([18]). Let X be a G-metric space. Suppose the maps f, g : X →
X satisfy the following condition: there exists a nondecreasing function φ : R+ →
R+ satisfying limn→∞ φn(t) = 0 for all t ∈ (0,∞) such that either

G(fx, fy, fz) ≤ φ(max{G(gx, gy, gz), G(gx, fx, fx), G(gy, fy, fy), G(gz, fz, fz)}),
(3)

or

G(fx, fy, fz) ≤ φ(max{G(gx, gy, gz), G(gx, gx, fx), G(gy, gy, fy), G(gz, gz, fz)})

for all x, y, z ∈ X. If f(X) ⊆ g(X) and g(X) is a G-complete subspace of X, then
f and g have a unique point of coincidence in X. Moreover, if f and g are weakly
compatible, then f and g have a unique common fixed point.

Unfortunately, the example given in support of Theorem 2 by Aage and Salunke
(Example 2, [1]) is false in the sense that the maps T and ϕ defined in this example
do not satisfy the inequality (2). For, the example considered by Aage and Salunke is
the following.

EXAMPLE 4 ([1]). Let X = [0, 1]. Define G : X3 → R+ by

G(x, y, z) = |x− y|+ |y − z|+ |z − x| for all x, y, z ∈ X.
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Then (X,G) is a complete G-metric space. The authors defined T on X by Tx = x− x2

2

and ϕ(t) = t2

2 , t ≥ 0. Let us choose x = 1, y = 1
2 and z = 1

4 . Then G(Tx, Ty, Tz) = 9
16 ,

G(x, y, z) = 3
2 and ϕ(G(x, y, z)) = 9

8 . Hence

9

16
= G(Tx, Ty, Tz) � G(x, y, z)− ϕ(G(x, y, z)) =

3

8
.

Also the inequality (2) fails to hold at x = 1
2 , y = 1

3 and z = 0. Hence T and ϕ do not
satisfy the inequality (2) so that T is not a weakly contractive map with this ϕ, even
though T has a fixed point 0.

The following is a suitable example in support of Theorem 2.

EXAMPLE 5. Let X = [0, 1]. We define G : X3 → R+ by

G(x, y, z) =

{
0, if x = y = z
max{x, y, z}, otherwise.

Then (X,G) is a complete G-metric space. Let Tx = x2

2 and ϕ(t) = t2

4 . Without loss
of generality, we assume that x > y > z. Then

G(Tx, Ty, Tz) = max{Tx, Ty, Tz} =
x2

2
,

G(x, y, z) = max{x, y, z} = x and ϕ(G(x, y, z)) =
x2

4
.

Now, G(x, y, z) − ϕ(G(x, y, z)) = x − x2

4 . Therefore G(Tx, Ty, Tz) = x2

2 < x − x2

4 =
G(x, y, z) − ϕ(G(x, y, z)). Hence T satisfies the inequality (2) so that T is a weakly
contractive map. Thus by Theorem 2, we have T has a unique fixed point and it is 0
in X.

Motivated by the ‘(ψ,ϕ)-weakly contractive maps’introduced by Dutta and Choud-
hury [12], ‘almost weak contractions’of Berinde [7, 8] and ‘condition (B)’of Babu, Sand-
hya and Kameswari [6] in metric space setting, in this paper we introduce ‘(ψ,ϕ)-almost
weakly contractive maps’in G-metric spaces and prove the existence of fixed points in
complete G-metric spaces. The importance of the class of (ψ,ϕ)-almost weakly con-
tractive maps is that this class properly includes the class of weakly contractive maps
studied by Aage and Salunke [1] so that the class of (ψ,ϕ)-almost weakly contractive
maps is larger than the class of weakly contractive maps, which is illustrated in Ex-
ample 6. Hence, the results obtained on the existence of fixed points of (ψ,ϕ)-almost
weakly contractive maps generalize the results of Aage and Salunke [1].
In the following, we introduce (ψ,ϕ)-almost weakly contractive maps.

DEFINITION 11. Let (X,G) be a G-metric space and let T be a selfmap of X. If
there exist ψ and ϕ in Ψ and L ≥ 0 such that

ψ(G(Tx, Ty, Tz)) ≤ ψ(G(x, y, z))− ϕ(G(x, y, z)) + L m(x, y, z) (4)
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for all x, y, z ∈ X, where

m(x, y, z) = min{G(Tx, x, x), G(Tx, y, y), G(Tx, z, z), G(Tx, y, z)},

then we call T is a (ψ,ϕ)-almost weakly contractive map on X.

We observe that if ψ is the identity map and L = 0 in (4) then T is a weakly
contractive map. Hence the class of all weakly contractive maps is contained in the
class of all (ψ,ϕ)-almost weakly contractive maps. Further, every (ψ,ϕ)-almost weakly
contractive map need not be a weakly contractive map (Example 6).
In Section 2, we prove the existence of fixed points of (ψ,ϕ)-almost weakly contrac-

tive maps in G-metric spaces. Our main result (Theorem 4) generalizes the result of
Aage and Salunke (Theorem 2, [1]). We also extend it to a pair of weakly compatible
maps and prove the existence of common fixed points. Corollaries and examples in
support of our results are provided in Section 3.

2 Main Results

The following is the main result of this paper.

THEOREM 4. Let (X,G) be a complete G-metric space and let T be a (ψ,ϕ)-
almost weakly contractive map. Then T has a unique fixed point in X.

PROOF. Let x0 ∈ X. We define the sequence {xn} by xn = T (xn−1), n = 1, 2, ....
If xn+1 = xn for some n ∈ N, then trivially xn a fixed point of T . Suppose xn+1 6= xn
for all n ∈ N. We now consider

ψ(G(xn, xn+1, xn+1)) = ψ(G(Txn−1, Txn, Txn))

≤ ψ(G(xn−1, xn, xn))− ϕ(G(xn−1, xn, xn))

+Lm(xn−1, xn, xn),

where m(xn−1, xn, xn) = 0 so that

ψ(G(xn, xn+1, xn+1)) ≤ ψ(G(xn−1, xn, xn))− ϕ(G(xn−1, xn, xn)). (5)

By using the property of ϕ, we have

ψ(G(xn, xn+1, xn+1)) < ψ(G(xn−1, xn, xn)) for n = 1, 2, . . . . (6)

Now, by applying the nondecreasing property of ψ, it follows that

G(xn, xn+1, xn+1) ≤ G(xn−1, xn, xn) for n = 1, 2, . . . .

Therefore {G(xn, xn+1, xn+1)} is a monotone decreasing sequence of nonnegative reals
and hence there exists r ≥ 0 such that G(xn, xn+1, xn+1) → r as n → ∞. Now, on
letting n → ∞ in the inequality (5), we have ψ(r) ≤ ψ(r) − ϕ(r) so that ϕ(r) ≤ 0.
Since ϕ(r) ≥ 0, it follows that ϕ(r) = 0 so that r = 0.

i.e., G(xn, xn+1, xn+1)→ 0 as n→∞. (7)
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We now prove that the sequence {xn} is Cauchy.
On the contrary, if {xn} is not Cauchy, then there exists an ε > 0 for which we can

find subsequences {xnk}, {xmk
} of {xn} with nk > mk ≥ k such that

G(xnk , xmk
, xmk

) ≥ ε. (8)

Corresponding to each mk, we can choose nk such that it is the smallest integer with
nk > mk and satisfying (8). Then, we have

G(xnk , xmk
, xmk

) ≥ ε and G(xnk−1, xmk
, xmk

) < ε. (9)

We now prove the following three identities:

(i) limk→∞G(xnk , xmk
, xmk

) = ε.

(ii) limk→∞G(xnk−1, xmk−1, xmk−1) = ε.

(iii) limk→∞G(xnk , xmk−1, xmk−1) = ε.

From (9), we have G(xnk , xmk
, xmk

) ≥ ε so that

ε ≤ lim
k→∞

inf G(xnk , xmk
, xmk

). (10)

Also,

G(xnk , xmk
, xmk

) ≤ G(xnk , xnk−1, xnk−1) +G(xnk−1, xmk
, xmk

)

< G(xnk , xnk−1, xnk−1) + ε,

and hence
lim
k→∞

supG(xnk , xmk
, xmk

) ≤ ε. (11)

From (10) and (11), we have

ε ≤ lim
k→∞

inf G(xnk , xmk
, xmk

) ≤ lim
k→∞

supG(xnk , xmk
, xmk

) ≤ ε

so that limk→∞G(xnk , xmk
, xmk

) exists and

ε = lim
k→∞

inf G(xnk , xmk
, xmk

) ≤ lim
k→∞

supG(xnk , xmk
, xmk

) = ε.

Hence
lim
k→∞

G(xnk , xmk
, xmk

) = ε. (12)

Therefore (i) holds. Also,

G(xnk−1, xmk−1, xmk−1) ≤ G(xnk−1, xmk
, xmk

) +G(xmk
, xmk−1, xmk−1)

≤ G(xnk−1, xnk , xnk) +G(xnk , xmk
, xmk

)

+G(xmk
, xmk−1, xmk−1).
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On taking limit superior as k →∞ and using (7) and (12), we get

lim
k→∞

supG(xnk−1, xmk−1, xmk−1) ≤ ε. (13)

Now,

G(xnk , xmk
, xmk

) ≤ G(xnk , xnk−1, xnk−1) +G(xnk−1, xmk−1, xmk−1)

+G(xmk−1, xmk
, xmk

).

Hence, we have that

G(xnk−1, xmk−1, xmk−1) ≥ G(xnk , xmk
, xmk

)−G(xnk , xnk−1, xnk−1)

−G(xmk−1, xmk
, xmk

).

Now on taking limit inferior both sides, and using (7) and (12), we get

ε ≤ lim
k→∞

inf G(xnk−1, xmk−1, xmk−1). (14)

Thus from (13) and (14), we have

ε ≤ lim
k→∞

inf G(xnk−1, xmk−1, xmk−1) ≤ lim
k→∞

supG(xnk−1, xmk−1, xmk−1) ≤ ε.

Hence it follows that
lim
k→∞

G(xnk−1, xmk−1, xmk−1) = ε. (15)

Therefore (ii) holds. Let us now prove (iii). From (8), we have

ε ≤ G(xnk , xmk
, xmk

) ≤ G(xnk , xmk−1, xmk−1) +G(xmk−1, xmk
, xmk

).

This implies that

G(xnk , xmk−1, xmk−1) ≥ ε−G(xmk−1, xmk
, xmk

)

and
lim
k→∞

inf G(xnk , xmk−1, xmk−1) ≥ ε. (16)

Now,

G(xnk , xmk−1, xmk−1) ≤ G(xnk , xnk−1, xnk−1) +G(xnk−1, xmk−1, xmk−1)

and hence using (7) and (ii), we get

lim
k→∞

supG(xnk , xmk−1, xmk−1) ≤ ε. (17)

Now, from (16) and (17), we have

ε ≤ lim
k→∞

inf G(xnk , xmk−1, xmk−1) ≤ lim
k→∞

supG(xnk , xmk−1, xmk−1) ≤ ε

so that G(xnk , xmk−1, xmk−1)→ ε as k →∞. Therefore (iii) holds.
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Now

ψ(G(xnk , xmk
, xmk

)) = ψ(G(Txnk−1, Txmk−1, Txmk−1))

≤ ψ(G(xnk−1, xmk−1, xmk−1))− ϕ(G(xnk−1, xmk−1, xmk−1))

+L m(xnk−1, xmk−1, xmk−1).

On letting k →∞ and using (i)—(iii) and (7), we get

ψ(ε) ≤ ψ(ε)− ϕ(ε) < ψ(ε),

which is a contradiction. Therefore {xn} is a G-Cauchy sequence. Since X is complete,
there exists p ∈ X such that {xn} is G-convergent to p. We now consider

ψ(G(xn, Tp, Tp)) = ψ(G(Txn−1, Tp, Tp))

≤ ψ(G(xn−1, p, p))− ϕ(G(xn−1, p, p)) + Lm(xn−1, p, p).

On letting n → ∞, we have ϕ(G(p, Tp, Tp)) ≤ 0 so that we must have Tp = p.
Therefore p is a fixed point of T in X.
Uniqueness: Suppose T has two fixed points p and q in X with p 6= q. Now, we

consider

ψ(G(p, q, q)) = ψ(G(Tp, Tq, T q))

≤ ψ(G(p, q, q))− ϕ(G(p, q, q)) + Lm(p, q, q)

= ψ(G(p, q, q))− ϕ(G(p, q, q)) < ψ(G(p, q, q)),

which is a contradiction. Therefore ψ(G((p, q, q)) = 0 so that G(p, q, q) = 0 and hence
that p = q. Thus, p is the unique fixed point of T in X. Hence the theorem follows.

We now prove a common fixed point theorem for a pair of weakly compatible maps.

THEOREM 5. Let (X,G) be a complete G-metric space and let T and S be two
selfmaps on (X,G). Assume that T (X) ⊆ S(X), S is continuous, and there exist
ψ,ϕ ∈ Ψ and L ≥ 0 such that

ψ(G(Tx, Ty, Tz)) ≤ ψ(M(x, y, z))− ϕ(M(x, y, z)) + Lm(x, y, z), (18)

where

M(x, y, z) = max{G(Sx, Sy, Sz), G(Sx, Tx, Tx), G(Sy, Ty, Ty), G(Sz, Tz, Tz)}

and

m(x, y, z) = min{G(Tx, Sx, Sx), G(Tx, Sy, Sy), G(Tx, Sz, Sz), G(Tx, Sy, Sz)}

for x, y, z ∈ X. Then T and S have a unique common fixed point in X provided T and
S are weakly compatible maps.
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PROOF. Let x0 ∈ X be arbitrary. Since T (X) ⊆ S(X), we can choose {xn} ⊆ X
such that T (xn) = S(xn+1) = yn (say), n = 0, 1, 2, .... Let n ≥ 1 be an integer. Then
by using the inequality (18) we have

ψ(G(yn, yn+1, yn+1)) = ψ(G(Txn, Txn+1, Txn+1))

≤ ψ(M(xn, xn+1, xn+1))− ϕ(M(xn, xn+1, xn+1))

+Lm(xn, xn+1, xn+1),

where

M(xn, xn+1, xn+1) = max{G(Sxn, Sxn+1, Sxn+1), G(Sxn, Txn, Txn),

G(Sxn+1, Txn+1, Txn+1), G(Sxn+1, Txn+1, Txn+1)}
= G(Sxn, Sxn+1, Sxn+1)

and

m(xn, xn+1, xn+1)

= min{G(Txn, Sxn, Sxn), G(Txn, Sxn+1, Sxn+1),

G(Txn, Sxn+1, Sxn+1), G(Txn, Sxn+1, Sxn+1)}
= min{G(yn, yn−1, yn−1), G(yn, yn, yn), G(yn, yn, yn), G(yn, yn, yn)}
= 0

since G(yn, yn, yn) = 0. This implies that

ψ(G(yn, yn+1, yn+1)) ≤ ψ(G(yn−1, yn, yn))− ϕ(G(yn−1, yn, yn)). (19)

Hence, from the inequality (18), if ym = ym+1 for some m, then it follows that yn = ym
for all n ≥ m so that {yn} is Cauchy. Therefore, without loss of generality, we assume
that yn 6= yn+1 for all n = 0, 1, 2, . . . . Now, from (18), we have

ψ(G(yn, yn+1, yn+1)) < ψ(G(yn−1, yn, yn)).

Hence by the nondecreasing nature of ψ, it follows that

G(yn, yn+1, yn+1) ≤ G(yn−1, yn, yn) for all n = 1, 2, . . . .

Therefore {G(yn, yn+1, yn+1)} is a monotone decreasing sequence of nonnegative reals.
So, there exists r ≥ 0 such that G(yn, yn+1, yn+1) → r as n → ∞. Now, from the
inequality (19), we have

ψ(G(yn, yn+1, yn+1)) ≤ ψ(G(yn−1, yn, yn))− ϕ(G(yn−1, yn, yn)).

On letting n → ∞, we have ψ(r) ≤ ψ(r) − ϕ(r) so that ϕ(r) ≤ 0. Since ϕ(r) ≥ 0, it
follows that ϕ(r) = 0 so that r = 0.

i.e., G(yn, yn+1, yn+1)→ 0 as n→∞. (20)
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We now prove that the sequence {yn} is Cauchy. If we suppose that {yn} is not
Cauchy, then there exists an ε > 0 and there exist subsequences {ynk}, {ymk

} of {yn}
with nk > mk ≥ k such that

G(ynk , ymk
, ymk

) ≥ ε. (21)

Corresponding to each mk, we can choose nk such that it is the smallest integer with
nk > mk and satisfying (21). Then, we have

G(ynk , ymk
, ymk

) ≥ ε and G(ynk−1, ymk
, ymk

) < ε. (22)

Now the following identities follow as in the proof of Theorem 4.

(i) limk→∞G(ynk , ymk
, ymk

) = ε.

(ii) limk→∞G(ynk−1, ymk−1, ymk−1) = ε.

(iii) limk→∞G(ynk , ymk−1, ymk−1) = ε.

We now consider

ψ(G(ynk , ymk
, ymk

)) = ψ(G(Txnk , Txmk
, Txmk

))

≤ ψ(M(xnk , xmk
, xmk

))− ϕ(M(xnk , xmk
, xmk

))

+Lm(xnk , xmk
, xmk

),

where

M(xnk , xmk
, xmk

) = max{G(Sxnk , Sxmk
, Sxmk

), G(Sxnk , Txnk , Txnk),

G(Sxmk
, Txmk

, Txmk
), G(Sxmk

, Txmk
, Txmk

)}
= G(Sxnk , Sxmk

, Sxmk
) = G(ynk−1, ymk−1, ymk−1)

and

m(xnk , xmk
, xmk

) = min{G(Txnk , Sxnk , Sxnk), G(TxnkSxmk
, Sxmk

),

G(Txnk , Sxmk
, Sxmk

), G(Txnk , Sxmk
, Sxmk

)}.

Therefore,

ψ(G(ynk , ymk
, ymk

))

≤ ψ(G(ynk−1, ymk−1, ymk−1))− ϕ(G(ynk−1, ymk−1, ymk−1))

+Lmin {G(ynk , ynk−1, ynk−1), G(ynk , ymk−1, ymk−1),

G(ynk , ymk−1, ymk−1), G(ynk , ymk−1, ymk−1)}.

On letting k →∞ and using (i)—(iii) and (20), we get

ψ(ε) ≤ ψ(ε)− ϕ(ε) < ψ(ε),

which is a contradiction. Therefore {yn} is a G-Cauchy sequence. Since X is complete,
there exists z ∈ X such that limn→∞ yn = limn→∞ Txn = limn→∞ Sxn+1 = z. We
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now prove that z is a common fixed point of T and S. Since S is continuous, we have
limn→∞ STxn = limn→∞ SSxn = Sz. Further, since S and T are weakly compatible,
we have limn→∞G(TSxn, STxn, STxn) = 0, which implies limn→∞ TSxn = Sz. Now,
from (18), we have

ψ(G(TSxn, Txn, Txn)) ≤ ψ(M(Sxn, xn, xn))− ϕ(M(Sxn, xn, xn))

+Lm(Sxn, xn, xn), (23)

where

M(Sxn, xn, xn) = max{G(SSxn, Sxn, Sxn), G(SSxn, TSxn, TSxn),

G(Sxn, Txn, Txn), G(Sxn, Txn, Txn)}
= G(SSxn, Sxn, Sxn)

and

m(Sxn, xn, xn) = min{G(TSxn, SSxn, SSxn), G(TSxn, Sxn, Sxn),

G(TSxn, Sxn, Sxn), G(TSxn, Sxn, Sxn)}.

Therefore, from (23), we have

ψ(G(TSxn, Txn, Txn)) ≤ ψ(G(SSxn, Sxn, Sxn))− ϕ(G(SSxn, Sxn, Sxn))

+Lmin{G(TSxn, SSxn, SSxn), G(TSxn, Sxn, Sxn),

G(TSxn, Sxn, Sxn), G(TSxn, Sxn, Sxn)}.

On letting n→∞, we get

ψ(G(Sz, z, z)) ≤ ψ(G(Sz, z, z))− ϕ(G(Sz, z, z)),

which implies that ϕ(G(Sz, z, z)) ≤ 0 so that we must have Sz = z. Now, we consider

ψ(G(Txn, T z, Tz)) ≤ ψ(M(xn, z, z))− ϕ(M(xn, z, z)) + Lm(xn, z, z), (24)

where

M(xn, z, z) = max{G(Sxn, Sz, Sz), G(Sxn, Txn, Txn), G(Sz, Tz, Tz), G(Sz, Tz, Tz)}

and

m(xn, z, z) = min{G(Txn, Sxn, Sxn), G(Txn, Sz, Sz), G(Txn, Sz, Sz), G(Txn, Sz, Sz)}.

Also, we have

lim
n→∞

M(xn, z, z) = G(z, Tz, Tz) and lim
n→∞

m(xn, z, z) = 0, (25)

since limn→∞G(TSxn, SSxn, SSxn) = 0. Now, on letting n → ∞ in (24) and using
(25), we get

ψ(G(z, Tz, Tz)) ≤ ψ(G(z, Tz, Tz))− ϕ(G(z, Tz, Tz)).

Then ϕ(G(z, Tz, Tz)) ≤ 0. Therefore, ϕ(G(z, Tz, Tz)) = 0 so that G(z, Tz, Tz) = 0.
Therefore, Tz = z. Thus z is a common fixed point of T and S. Uniqueness of common
fixed point of T and S follows from the inequality (18). This completes the proof of
the theorem.
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3 Corollaries and Examples

In this section, we draw some corollaries from the main results of Section 2 and provide
examples in support of our results. The following is an example in support of Theorem
4.

EXAMPLE 6. Let X = [0, 1]. We define G : X3 → R+ by

G(x, y, z) =

{
0, if x = y = z
max{x, y, z}, otherwise.

Then (X,G) is a complete G-metric space. We define T : X → X by

T (x) =


1
2 if x = 0,
2x if 0 < x < 1

2 ,
1 if 12 ≤ x ≤ 1.

We define ψ and ϕ on R+ by ψ(t) = t2

3 and ϕ(t) = t2

2 . Then, it is easy to verify that
T satisfies the inequality (4) with L = 1. i.e., T is a (ψ,ϕ)-almost weakly contractive
map. Thus T satisfies all the hypothesis of Theorem 4 and 1 is the unique fixed point
of T . Here we observe that T is not a continuous map.
Further, we observe that T is not a weakly contractive map. For, let us choose x =

1
3 and y = z = 0. Then G(Tx, Ty, Tz) = 2

3 , G(x, y, z) = 1
3 and ϕ(G(x, y, z)) = ϕ( 13 ).

Hence,

2

3
= G(Tx, Ty, Tz) � G(x, y, z)− ϕ(G(x, y, z)) =

1

3
− ϕ(

1

3
) for any ϕ ∈ Ψ.

Hence T does not satisfy the inequality (2) for any ϕ ∈ Ψ so that T is not a weakly
contractive map in G-metric space. Thus Theorem 2 is not applicable.

Further, this example suggests that the class of (ψ,ϕ)-almost weakly contractive
maps is larger than the class of weakly contractive maps in G-metric spaces.

REMARK 1. Theorem 2 follows as a corollary to Theorem 4 by choosing ψ as the
identity map and L = 0. Hence Example 6 suggests that Theorem 4 is a generalization
of Theorem 2.

COROLLARY 1. Let (X,G) be a complete G-metric space and let T and S be
two selfmaps on (X,G). Assume that T (X) ⊆ S(X), S is continuous, and there exist
ψ,ϕ ∈ Ψ such that

ψ(G(Tx, Ty, Tz)) ≤ ψ(M(x, y, z))− ϕ(M(x, y, z)), (26)

where

M(x, y, z) = max{G(Sx, Sy, Sz), G(Sx, Tx, Tx), G(Sy, Ty, Ty), G(Sz, Tz, Tz)}

for x, y, z ∈ X. Then T and S have a unique common fixed point in X provided T and
S are weakly compatible maps.

PROOF. Follows from Theorem 5 by choosing L = 0.



Babu et al. 83

The following is an example in support of Corollary 1.

EXAMPLE 7. Let X = [0, 1]. We define G : X3 → R+ by

G(x, y, z) =

{
0, if x = y = z,
max{x, y, z}, otherwise.

Then (X,G) is a complete G-metric space. We define T, S : X → X and ψ, ϕ on R+by

T (x) =
x2

2
, S(x) =

x

4
(5− x), ψ(t) =

4t2

3
and ϕ(t) =

t2

3

for all x ∈ X and t ∈ R+. Then clearly T (X) ⊆ S(X).Without loss of generality, we
assume that x > y > z. Then

G(Tx, Ty, Tz) = max{Tx, Ty, Tz} = max{x
2

2
,
y2

2
,
z2

2
} =

x2

2
.

Also

G(Sx, Sy, Sz) = max{Sx, Sy, Sz} = max{x
4

(5− x),
y

4
(5− y),

z

4
(5− z)} =

x

4
(5− x).

Now, we consider

ψ(G(Tx, Ty, Tz)) =
x4

3
≤ x2

16
(5− x)2 = [G(Sx, Sy, Sz)]2

≤ [M(x, y, z)]2 =
4

3
[M(x, y, z)]2 − 1

3
[M(x, y, z)]2

= ψ(M(x, y, z))− ϕ(M(x, y, z)).

Therefore,
ψ(G(Tx, Ty, Tz)) ≤ ψ(M(x, y, z))− ϕ(M(x, y, z))

so that the inequality (26) of Corollary 1 holds. Thus, T and S satisfy all the hypotheses
of Corollary 1 and 0 is the unique common fixed point of T and S.

REMARK 2. We observe that the ϕ that is used in Theorem 5 is different from φ
that is used in Theorem 3.
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