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Abstract

The derivative of a finite continued fraction of a complex variable is derived
by presenting the continued fraction as a component of a finite composition of
Ĉ2 → Ĉ2 linear fractional transformations of analytic functions. Connections
to previous work and possible applications of the deduced formula are briefly
discussed.

1 Introduction

Continued fractions

∞
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k=n

(
ak
bk

)
= bn−1 +

an

bn +
an+1

bn+1 +
an+2

. . .

(1)

occur frequently in applications due to close connections between continued fractions
and second-order difference and differential equations [1]. Although it has been known
since the pioneering work of Euler that one can convert a continued fraction into a power
series, implying analyticity in the whole domain of definition as long as the elements
ak and bk are analytic, it is diffi cult to give general formulae for the derivatives of a
continued fraction with respect to its argument. In some cases this can be accomplished
by utilizing a connection between a given continued fraction and a special function
(e.g. [2], see [3] for further possibilities). So far most studies have concentrated on the
more mathematically interesting case of an infinite continued fraction. In applications,
however, boundary conditions– or computational limitations– lead to the truncation of
the continued fraction (1) after a finite number of levels, resulting in a finite continued
fraction KN

k=n(ak/bk). Here we derive a general formula for the derivative of this
finite continued fraction by presenting it as a finite composition of linear fractional
transformation of analytic functions. We then briefly discuss the connections between
the deduced formula and partial derivatives with respect to the elements ak and bk.
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2 Preliminaries and the Main Result

We consider a finite continued fraction
N

K
k=n

(
ak
bk

)
=

an

bn +
an+1

bn+1 +
an+2

. . .

bN−1 +
aN
bN

, (2)

where ak and bk are functions of a complex argument z that we suppress for brevity.
This finite continued fraction is also known as the N th approximant of the infinite
continued fraction (1). (We neglect the term bn−1 for simplicity, which does not affect
the generality of our results.) For N − n > ` ≥ 1, the expression KN

k=n+`(ak/bk) is
known as the `th tail of the finite continued fraction (2).
Now let {ak}k≥n and {bk}k≥n be two sequences of complex-valued analytic functions

with domains Ψ and Ω ⊂ C, respectively. We define a third sequence of functions
{gk}k≥n as

gk(z, ζ) = (gk,1(z), gk,2(z, ζ)) =

(
z,

ak(z)

bk(z) + ζ

)
, (3)

with domain G ⊂ Ψ ∩ Ω × B(0, RG) ⊂ Ĉ2 such that gk(G) ⊆ G for all k = n, . . . , N ;
here B(0, RG) is an open disk with radius RG < ∞ and Ĉ = C ∪ {∞}. We set the
(finite) G→ G composite function

fn→N (z, ζ) = (fn→N,1, fn→N,2) := gn ◦ gn+1 ◦ · · · ◦ gN (z, ζ), (4)

where subscript n→ N indicates the extent of the composition.

THEOREM 1. Assuming that a`(z), b`(z) + g`+1,2(z, ζ) 6= 0 for ` = n, . . . , N − 1
and bN (z) 6= 0 for all (z, ζ) ∈ G, it follows that

(i) fn→N is analytic

(ii) fn→N,2 evaluated at (z, 0) equals the finite continued fraction (2).

PROOF. Claim (i) follows since gk,1 and gk,2 are C→ C linear fractional transfor-
mations of analytic functions that are bounded and continuous for every (z, ζ) ∈ G and
k = n, . . . , N . Thus fn→N is also analytic as a finite composition of analytic functions
[4, Sec. 2.1].
Now fn→N,2(z, 0) =KN

k=n(ak/bk) is a well-defined G→ C function corresponding
to the standard definition of the (nth tail of a) continued fraction [1, Sec. I.1], thus
satisfying claim (ii).

LEMMA (Chain rule). The chain rule for fn→N,2 reads as

∂fn→N,2
∂z

=

N∑
j=n

(
j∏

m=n+1

∂gm−1,2
∂gm,2

)
∂gj,2
∂z

. (5)
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PROOF. From Theorem 1 all gk,2 are analytic and ∂gk/∂(z̄, ζ̄) = ( 0 00 0 ). Equa-
tion (5) is most conveniently proven by induction; the argument is essentially the same
as that of Gill [5], but is repeated here for the convenience of the reader. First, letting
N = n+ 1, the result follows directly from the usual chain rule:

P1 :
∂fn→N,2

∂z
=

∂gn,2
∂gn+1,1

∂gn+1,1
∂z

+
∂gn,2
∂gn+1,2

∂gn+1,2
∂z

=
∂gn,2
∂z

+
∂gn,2
∂gn+1,2

∂gn+1,2
∂z

=

n+1∑
j=n

(
j∏

m=n+1

∂gm−1,2
∂gm,2

)
∂gj,2
∂z

,

where
∏n
m=n+1 · · · = 1. We now assume that Eq. (5) holds for N = n+ k, i.e.

Pk :
∂fn→N,2

∂z
=

n+k∑
j=n

(
j∏

m=n+1

∂gm−1,2
∂gm,2

)
∂gj,2
∂z

.

To show that this implies Pk+1, we first write fn→N (z, ζ) = gn(fn+1→N (z, ζ)). Now
with a simple change in indexing of Pk we have

∂fn+1→N,2
∂z

=

n+k+1∑
j=n+1

(
j∏

m=n+2

∂gm−1,2
∂gm,2

)
∂gj,2
∂z

,

so that

Pk+1 :
∂fn→N,2

∂z
=

∂gn,2
∂fn+1→N,1

∂fn+1→N,1
∂z

+
∂gn,2

∂fn+1→N,2

∂fn+1→N,2
∂z

=
∂gn,2
∂z

+
∂gn,2
∂gn+1,2

n+k+1∑
j=n+1

(
j∏

m=n+2

∂gm−1,2
∂gm,2

)
∂gj,2
∂z

=

n+k+1∑
j=n

(
j∏

m=n+1

∂gm−1,2
∂gm,2

)
∂gj,2
∂z

,

which completes the proof.

We can now present our main result:

THEOREM 2. Under the assumptions of Theorem 1, dKN
k=n(ak/bk)/dz is an

analytic function for all z, (z, 0) ∈ G, and

d

dz

N

K
k=n

(
ak
bk

)
=

N∑
j=n

(−1)j−n+1


j∏

k=n

1

ak

[
N

K̀
=k

(
a`
b`

)]2
×


 N

K̀
=j

(
a`
b`

)−1 daj
dz
− dbj

dz

 . (6)
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PROOF. Applying substitutions

∂gk,2
∂z

=

dak
dz

(bk + ζ)− ak
dbk
dz

(bk + ζ)
2

∣∣∣∣∣
ζ=ζk

and
∂gk,2
∂ζ

= − ak

(bk + ζ)
2

∣∣∣∣∣
ζ=ζk

with ζk = fk+1→N,2 =KN
m=k+1(am/bm) for k = n, . . . , N − 1; ζN = 0, to the previous

Lemma gives for the derivative

N∑
j=n


j∏

k=n+1

−ak−1[
bk−1 +

N

K̀
=k

(
a`
b`

)]2


bj +

N

K
`=j+1

(
a`
b`

) daj
dz
− aj

dbj
dzbj +

N

K
`=j+1

(
a`
b`

)2
,

from which we obtain the final result [Eq. (6)] after factoring out continued fractions.
We can now replace the partial derivative with a total one as KN

k=n(ak/bk) is an
analytic function of z only.

It should be noted that if ak and bk are unknown analytic functions, conditions in
Theorem 1 are suffi cient to guarantee that the undetermined cases 0/0 or 0 · ∞ are
not possible to occur when evaluating dKN

k=n(ak/bk)/dz. However, if ak and bk are
known, it might be possible to relax these conditions: for example, if either a` ≡ 0
or b`+1 ≡ −KN

k=`+2(ak/bk) for some N − 1 > ` > n, the original continued fraction
simply terminates after `− n levels and we can reset N = `.

3 Partial Derivatives with Respect to a` and b`
As an example of the application of Eq. (6), we turn our attention to two special cases
presented in earlier literature which give partial derivatives of continued fractions with
respect to their elements. In accordance with the standard practice in the literature,
we consider only n = 1.
The Nth modified approximant of the continued fraction (1) can be now defined

in our notation as f1→N,2(z, ζ) for arbitrary ζ [1, Sec. I.5]. This allows us to extend
preceding results for infinite continued fractions:

OBSERVATION. The previous Lemma holds for all ζ ∈ B(0, RG) that are inde-
pendent of z as well as for ζ = 0. Now if we consider sequences {ak}k≥1, ak 6= 0
for k < N , and {bk}k≥1, which are constants except for subsequences {a`(z)}`∈I and
{b`(z)}`∈J , I, J ⊆ {1, 2, . . . , N} for some N , which are analytic functions of z so that



J. Malila 17

K∞k=N+1(ak/bk) is defined and converges into ζ∞ ∈ Ĉ, the Theorem 2 also holds for
ζ = ζ∞, i.e. forK∞k=1(ak/bk).

The rationale behind this observation is that, as long as the (` + 1)st tail, ` ≤
N , is constant, the Nth modified approximant of (1) given by the finite composition
f1→N (z, ζ∞) results f1→N,2(z, ζ∞) = K∞k=1(ak/bk). For the extension to an infinite
composition, see [5].
Let us first consider the case where all bk and ak 6=` are constants. Assuming that

neither a` nor da`/dz vanishes, only the term with index ` remains from the sum, and
applying dz = (∂a`/∂z)

−1da` to Eq. (6) gives

∂

∂a`

∞

K
k=1

(
ak
bk

)
= (−1)`

∏̀
k=1

1

ak

 ∞K
j=k

(
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bj

)2  ∞K
j=`

(
aj
bj

)−1

= (−1)`−2
`−1∏
k=2

1

ak

 ∞K
j=k

(
aj
bj

)2 1

a1

 ∞K
j=1

(
aj
bj

)2 1

a`

∞

K
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(
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bj

)

=
1
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∞

K
j=1

(
aj
bj

) `−1∏
k=2

−
∞

K
j=k

(
aj
bj

)

bk +

∞

K
j=k+1

(
aj
bj

)
∞

K
j=`

(
aj
bj

)

b1 +

∞

K
j=2

(
aj
bj

)

=
1

a`

∞

K
j=1

(
aj
bj

) ∏̀
k=2

−
∞

K
j=k

(
aj
bj

)

bk−1 +

∞

K
j=k

(
aj
bj

) , (7)

which is the generalization of Waadeland’s [6] formula by Levrie and Bultheel [7]; the
original formula follows if bk ≡ 1 and ` ≥ 2. Note that if ` = 1, the minus sign cannot
be taken inside the (empty) product.
Next we turn to the opposite case, and set all ak and bk 6=` constants and assume

that neither b` nor db`/dz vanishes. Considering first the finite case, Eq. (6) reduces
to

∂

∂b`

N

K
k=1

(
ak
bk

)
= (−1)`

∏̀
k=1

1

ak

 N

K
j=k

(
aj
bj

)2 . (8)

Using the determinant formula [1, Eq. (1.2.10)], we can write

(−1)`−1
∏̀
k=1

ak = B`B`−1

[
`

K
k=1

(
ak
bk

)
−

`−1

K
k=1

(
ak
bk

)]
, (9)

where the mth canonical denominator Bm is given by the Wallis—Euler recurrence
relation Bm = bmBm−1 + amBm−2 with initial conditions B−1 = 0 and B0 = 1 and
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satisfies the relation Am/Bm =Km
k=1(ak/bk). On the other hand, Dudley [8, Corollary

1.10 that also holds in the complex case] has shown that

∂

∂b`

N

K
k=1

(
ak
bk

)
= −

[
`−1

K
k=1

(
ak
bk

)
−

N

K
k=1

(
ak
bk

)]2
B`−1[

`

K
k=1

(
ak
bk

)
−

`−1

K
k=1

(
ak
bk

)]
B`

. (10)

Together Eqs. (8)—(10) give

∏̀
k=1

 N

K
j=k

(
aj
bj

)2 = B2`−1

[
N

K
k=1

(
ak
bk

)
−

`−1

K
k=1

(
ak
bk

)]2
, (11)

which seems to be a new result, though it can probably be obtained independently from
the basic properties of continued fractions. Using the Observation above and Theorem
1.11 in [8], we can extend the previous result:

CONJECTURE. IfK∞k=1(ak/bk) converges in Ĉ,

∏̀
k=1

 ∞K
j=k

(
aj
bj

)2 = B2`−1

[ ∞
K
k=1

(
ak
bk

)
−

`−1

K
k=1

(
ak
bk

)]2
. (12)

We remark that although the derivation leading to Eqs. (11) and (12) was based
on the assumption of analytic sequences {ak}k≥1 and {bk}k≥1, this is not necessary
for the proposed Conjecture to hold, as we can always expandK∞k=1(ak/bk) into series
with elements that are rational functions of ak and bk [3, Sec. 1.7], and are therefore
analytic with respect to a` or b` for all ` <∞.

4 Concluding Remarks

Despite its simplicity, the main result of this short note, Theorem 2, has not appar-
ently been published before: As only intermediate complex analysis is needed to prove
the result, it might have some instructional use besides being relevant for scientists
working in adjacent fields. It should be noted that in practical applications, ak and
bk are typically relatively simple functions, such as low-degree polynomials or rational
functions, so that the relevant domain for the problem D, D × B(0, RG) ⊆ G, can be
often inferred directly from the context.
The fact that the obtained formula contains the original continued fraction and its

tails yields some useful corollaries: First, for relatively simple ak and bk the computa-
tional cost of numerical evaluation of the analytic expression [Eq. (6)] for the derivative
is not much higher than that of the original continued fraction if a vector containing
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computed tails/approximants is updated during each iteration step, and can be lower
than that of the evaluation of the corresponding finite difference that involves two
evaluations of KN

k=n(ak/bk) at different points. Secondly, the obtained result can be
applied iteratively to calculate higher order derivatives of the finite continued fraction
if needed. However, expressions for these higher derivatives become increasingly im-
practical with increasing order, and we make no attempt to present those here; we
are unaware of any suitable generalization of the Faá di Bruno’s formula that could
simplify this treatment.
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