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Abstract

We consider the oscillation of a class of second order delay functional differen-

tial equations. This relatively difficult problem is completely solved by applying

the Cheng-Lin envelope method to find the exact conditions for the absence of

real roots of the associated characteristic function. Several specific examples are

also included to illustrate these conditions.

1 Introduction

In this paper, we intend to consider delay differential equations with constant coeffi-
cients of the form

N ′′(t) + aN ′(t − τ1) + bN(t− τ2) = 0 (1)

where a, b ∈ R, τ1, τ2 ≥ 0 and a, b > 0, and to find the exact region containing these
parameters such that all solutions of equation (1) are oscillatory.

One motivation for studying (1) is that linearization of nonlinear equations (e.g. [1]
and [4])

N ′′(t) + f(N ′(t− τ1), N(t− τ2)) = 0 (2)

where f is continuous on R2, leads us to equation (1). Many qualitative properties of
the nonlinear equation (2) can then be inferred from the oscillatory properties of (1).

As another motivation, impulsive differential equations are mathematical apparatus
for simulation of different dynamical processes and phenomena observed in nature
(e.g. [7]). For this reason, many impulsive differential equations are studied and their
qualitative properties investigated (e.g. [2, 5, 8, 9, 10]). In particular, consider

N ′′(t) + aN ′(t− τ1) + bN(t− τ2) = 0, t ∈ [0,∞)\Γ, (3)

N(t+k ) = akN(tk), k ∈ N, (4)

N ′(t+k ) = akN
′(tk), k ∈ N, (5)
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184 Oscillation of Functional Differential Equations

where a, b ∈ R, τ1, τ2 ≥ 0, ak > 0 for k ∈ N, and Γ is a set of positive numbers
t0, t1, t2, · · · satisfying t0 < t1 < t2 < · · ·. The basic concepts relevant to system (3)-(5)
can be found in the appendix. Furthermore, we have the following

LEMMA 1.1. Let a, b ∈ R, τ1, τ2 ≥ 0, ak > 0 for k ∈ N, and Γ = {t0, t1, t2, ...},
and let the function

A(s, t) =

{ ∏
s≤tk<t

ak if [s, t) ∩ Υ 6= ∅

1 if [s, t) ∩ Υ = ∅
for t ≥ s ≥ 0.

Assume that there exist positive numbers α1 and α2 such that A(t − τi, t) = αi for
i = 1, 2. Then the system (3)-(5) has a nonoscillatory solution if, and only if, the
equation

λ2 +
a

α1
λe−λτ1 +

b

α2
e−λτ2 = 0 (6)

has a real root.

The proof of Lemma 1.1 is presented in the Appendix. Here we note that equation
(6) is exactly of the form (7).

It is well-known that all solutions of equation (1) are oscillatory if, and only if, the
characteristic equation

λ2 + aλe−λτ1 + be−λτ2 = 0 (7)

has no real roots. Clearly, (6) can be ‘absorbed’ into (7). Therefore, studying the
problem of absence of real roots of (7) becomes the main issue.

We rewrite equation (7) as

λ2 + xλe−λτ1 + ye−λτ2 = 0 (8)

where λ, x, y ∈ R and τ1, τ2 ≥ 0 with τ1τ2 6= 0, and intend to find the exact region
containing the parameters such that the equation (8) has no real roots. We note that
when τ1 = τ2 = 0, it is a quadratic polynomial so we may ignore this easy case. The
other case, however, is a relatively difficult one. Fortunately, we have an envelope
method which can be used to handle the existence of real roots of functions (e.g. [6])
This method is formalized recently and presented in the book [3]. We will apply this
method together with several new ideas and techniques to tackle our problem.

2 Preliminary

To facilitate discussion, we first recall a few basic concepts and tool explained in [3].
Let Θ0 be the null function, that is Θ0(x) = 0 for all x ∈ R. Given an interval I in R,
the chi-function χI : I → R is defined by χI(x) is equal to 1 if x ∈ I and 0 elsewhere.
The restriction of a real function f defined over an interval J (which is not disjoint
from I) will be written as fχI , so that fχI is now defined on I ∩ J and

(fχI )(x) = f(x), x ∈ I ∩ J.
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A point in the plane is said to be a dual point of order m of the plane curve S,
where m is a nonnegative integer, if there exist exactly m mutually distinct tangents
of S that also pass through it. The set of all dual points of order m of S in the plane
is called the dual set of order m of S. We remark that m = 0 is allowed. In this case,
there are no tangents of S that pass through the point in consideration.

Let {Cλ : λ ∈ I} , where I is a real interval, be a family of plane curves. With each
Cλ, suppose we can associate just one point Pλ in each Cλ such that the totality of
these points form a curve S. Then S is called an envelope of the family {Cλ| λ ∈ I}
if the curves Cλ and S share a common tangent line at the common point Pλ. Suppose
we have a family of curves in the x, y-plane implicitly defined by

F (x, y, λ) = 0, λ ∈ I,

where I is an interval of R. Then it is well known that the envelope S is described by
a pair of parametric functions (ψ(λ), φ(λ)) that satisfy

{
F (ψ(λ), φ(λ), λ) = 0,
F ′

λ(ψ(λ), φ(λ), λ) = 0,

for λ ∈ I, provided some “good conditions” are satisfied. In particular, let α, β, γ :
I → R. Then for each fixed λ ∈ I, the equation

Lλ : α(λ)x+ β(λ)y = γ(λ), (α(λ), β(λ)) 6= 0, (9)

defines a straight line Lλ in the x, y-plane, and we have a collection {Lλ : λ ∈ I} of
straight lines. For such a collection, we have the following result.

THEOREM 2.1 (see [3, Theorems 2.3 and 2.5]). Let α, β, γ be real differentiable
functions defined on the interval I such that α(λ)β′(λ) − α′(λ)β(λ) 6= 0 and β(λ) 6= 0
for λ ∈ I. Let Φ be the family of straight lines of the form (9). Let the curve S be
defined by the functions x = ψ(λ), y = φ(λ):

ψ(λ) =
β′(λ)γ(λ) − β(λ)γ′(λ)

α(λ)β′(λ) − α′(λ)β(λ)
, φ(λ) =

α(λ)γ′(λ) − α′(λ)γ(λ)

α(λ)β′(λ) − α′(λ)β(λ)
, λ ∈ I. (10)

Suppose ψ and φ are smooth functions over I and one of the following cases holds: (i)
ψ′(λ) 6= 0 for λ ∈ I; (ii) ψ′(λ) 6= 0 for I\{d} where d ∈ I and limλ→d− φ′(λ)/ψ′(λ) as
well as limλ→d+ φ′(λ)/ψ′(λ) exist and are equal. Then S is the envelope of the family
Φ.

THEOREM 2.2 (see [3, Theorem 2.6]). Let Λ be an interval in R, and α, β, γ be real
differentiable functions defined on Λ such that α(λ)β′(λ) − α′(λ)β(λ) 6= 0 for λ ∈ Λ.
Let Φ be the family of straight lines of the form (9), where λ ∈ Λ, and let the curve
S be the envelope of the family Φ. Then the point (α, β) in the plane is a dual point
of order m of S, if, and only if, the function α(λ)α+ β(λ)β − γ(λ), as a function of λ,
has exactly m mutually distinct roots in Λ.
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Let g be a function defined on an interval I with c = inf I and d = sup I. Note that
c or d may be infinite, or may be outside the interval I, and that g(c+), g(d−), g′(c+)
or g′(d−) may not exist. For λ ∈ (c, d), let

Lg|λ(x) = g′(λ)(x− λ) + g(λ), x ∈ R. (11)

In case d is finite and g(d−), g′(d−) exist, we let

Lg|d(x) = g′(d−)(x− d) + g(d−), x ∈ R, (12)

and in case c is finite and g(c+), g′(c+) exist, we let

Lg|c(x) = g′(c+)(x− c) + g(c+), x ∈ R. (13)

When d is finite, we say g ∼ Hd− if limλ→d− Lg|λ(α) = −∞ for any α < d; and
similarly when c is finite, g ∼ Hc+ if limλ→c+ Lg|λ(α) = −∞ for any α > c. In case d
is infinite, we say g ∼ H+∞ if limλ→+∞ Lg|λ(α) = −∞ for any α ∈ R; and similarly,
when c is infinite, we say g ∼ H−∞ if limλ→−∞ Lg|λ(α) = −∞ for any α ∈ R.

There is a convenient criterion for the determination of functions with the above
stated properties.

LEMMA 2.3.([3, Lemmas 3.1 and 3.5]). Let g : (c, d) → R be a smooth and strictly
convex function. (i) Assume d < +∞. If g′(d−) = +∞, then g ∼ Hd− . (ii) Assume
d = +∞. If g′(+∞) = +∞, or, g′(+∞) = 0 and g(+∞) = −∞, then g ∼ H+∞.

The description of the distribution of dual points of a plane curve can be cumber-
some. For this reason, it is convenient to introduce several notations. We say that a
point (a, b) in the plane is strictly above (above, strictly below, below) the graph of a
function g if a belongs to the domain of g and g(a) < b (respectively g(a) ≤ b, g(a) > b
and g(a) ≥ b). The notation is (a, b) ∈ ∨(g) (respectively (a, b) ∈ ∨(g), (a, b) ∈ ∧(g)
and (a, b) ∈ ∧(g)). Suppose we now have two real functions g1 and g2 defined one real
subsets I1 and I2 respectively. We say that (a, b) ∈ ∨(g1) ⊕ ∨(g2) if a ∈ I1 ∩ I2 and
b > g1(a) and b > g2(a), or, a ∈ I1\I2 and b > g1(a), or, a ∈ I2\I1 and b > g2(a). The
notations (a, b) ∈ ∨(g1)⊕∨(g2), (a, b) ∈ ∨(g1)⊕∧(g2), etc. are similarly defined. If we
now have n real functions g1, ..., gn defined on intervals I1, ..., In respectively, we write
(a, b) ∈ ∨(g1) ⊕∨(g2) ⊕ · · · ⊕ ∨(gn) if a ∈ I1 ∪ I2 ∪ · · · ∪ In, and if

a ∈ Ii1 ∪ Ii2 ∪ · · · ∪ Iim ⇒ b > gi1(a), b > gi2(a), ..., b > gim(a), i1, ..., im ∈ {1, ..., n}.

The notations (a, b) ∈ ∨(g1) ⊕∨(g2) ⊕ · · · ⊕ ∨(gn), etc. are similarly defined.

We will utilize several theorems in [3] (Theorems 3.6, 3.7, 3.10, 3.11, 3.17, 3.18,
3.19, 3.20, A3, A5, A8 and A16) which are relevant to the distribution maps for dual
points. However, two more new results are needed (see Lemmas 2.4 and 2.5 below).

By Theorems 3.6 and 3.10 in [3], we may easily show the following lemma.

LEMMA 2.4. Let a > 0, G1 ∈ C1(0, a) and G2 ∈ C1(−∞, a]. Suppose the following
hold:
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(i) G1 is strictly concave on (0, a) such that G1(a
−) and G′

1(a
−) exist, G1(0

+) = −∞
and G1˜H0+;

(ii) G2 is strictly convex on (−∞, a] such that LG2|−∞ exists;

(iii) G
(v)
1 (a−) = G

(v)
2 (a) for v = 0, 1.

Then the intersection of the dual sets of order 0 of G1 and G2 is

∨(G2χ(−∞,0]) ⊕ ∧(G1) ⊕ ∧(LG2|−∞).

See Figure 1.

(a) (b) (c)

Figure 1: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorems 3.6
and 3.10]) to yield (c).

By Theorems 3.8 and A.5 in [3], we may show the following lemma.

LEMMA 2.5. Let b > 0 > a, G1 ∈ C1(a, 0), G2 ∈ C1[a, b] and G3 ∈ C1(−∞, b).
Suppose the following hold:

(i) G1 is strictly convex on [a, 0) such that G1(0
+) exists and G1˜H0−;

(ii) G2 is strictly concave on (a, b) such that G2(a
+), G′

2(a
+), G2(b

−) and G′
2(b

−)
exist

(iii) G3 is strictly convex on (−∞, b] such that LG3|−∞ exists ;

(iv) G
(v)
1 (a) = G

(v)
2 (a+) and G

(v)
2 (b−) = G

(v)
3 (b) for v = 0, 1.

Then the intersection of the dual sets of order 0 of G1 G2 and G3 is

∨(G2χ(−∞,0]) ⊕∧(G2χ[0,b]) ⊕∧(LG3|−∞χ[0,∞]).

See Figure 2.
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(a) (b) (c)

Figure 2: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorems 3.8
and A.5]) to yield (c).

3 Cubic Polynomial

Before studying our problem, we need to consider the distribution of real roots of cubic
polynomial

P (λ|x̃, ỹ, d) = λ3 + x̃λ2 + ỹλ+ d (14)

for λ ∈ R where x̃, ỹ ∈ R and d > 0. Let

Ωij(d) =
{
(x̃, ỹ) ∈ R2 : P (λ|x̃, ỹ, d) has i distinct positive roots

and j distinct negative roots}

for nonnegative integers i and j such that i + j ≤ 3. We will apply the Cheng-Lin
envelope method to find the exact sets Ω01(d), Ω11(d), Ω02(d), Ω21(d) and Ω03(d) for
any d > 0. We note that P (0|x̃, ỹ, d) 6= 0 for all x̃, ỹ ∈ R. For each λ ∈ R\{0}, let Lλ

be the straight line in the plane defined by

Lλ : x̃λ2 + ỹλ = −λ3 − d. (15)

Note that Lλ defined by (15) is of the form (9) and α′(λ)β(λ) − α(λ)β′(λ) = −λ2 6= 0
for λ ∈ R\{0}. From (10), we let S be the curve defined by the parametric functions

x̃(λ) = −2λ+
d

λ2
and ỹ(λ) = λ2 − 2d

λ
for λ 6= 0. (16)

By Theorem 2.1, S is the envelope of the family {Lλ : λ ∈ R\{0}} where Lλ is defined
by (15). We have

x̃(−d1/3) = 3d1/3, ỹ(−d1/3) = 3d2/3,

lim
λ→−∞

(x̃(λ), ỹ(λ)) = (∞,∞),

lim
λ→0+

(x̃(λ), ỹ(λ)) = (sgn(d)∞, sgn(−d)∞),

lim
λ→0−

(x̃(λ), ỹ(λ)) = (sgn(d)∞, sgn(d)∞),

lim
λ→∞

(x̃(λ), ỹ(λ)) = (−∞,∞),
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x̃′(λ) = −2
λ3 + d

λ3
and ỹ′(λ) = 2

λ3 + d

λ2
for λ 6= 0. (17)

For λ 6= −d1/3, we further have

dỹ

dx̃
(λ) = −λ and

d2ỹ

dx̃2
(λ) =

λ3

2 (λ3 + d)
. (18)

In view of (17), x̃(λ) is strictly increasing on (−d1/3, 0) and strictly decreasing
on (−∞,−d1/3) ∪ (0,∞), and ỹ(λ) is strictly increasing on (−d1/3,∞) and strictly
decreasing on (−∞,−d1/3). We can see that the curve S is composed of two pieces S1

and S2 restricted respectively to (−∞, 0) and (0,∞). We can further see that the curve
S1 is composed of S11 and S12 restricted respectively to (−∞,−d1/3] and (−d1/3,∞).
S11 is the graph of a function y = S11(x) which is strictly increasing, strictly convex,
and smooth over [3d1/3,∞) (see Figure 3(a)); S12 is the graph of a function y = S12(x)
which is strictly increasing, strictly concave, and smooth over (3d1/3,∞) (see Figure
3(a)); and S2 is the graph of a function y = S2(x) which is strictly decreasing, strictly
convex, and smooth over R (see Figure 3(b)). We have

S
(v)
11 (3d1/3) = S

(v)
12 (

(
3d1/3

)+

), v = 1, 2.

Furthermore, S11 ∼ H+∞, S12 ∼ H+∞ and S2 ∼ H−∞ by Lemma 2.3 and (18). We
have the following lemma.

LEMMA 3.1. Assume that d > 0. Let the functions x̃(λ) and ỹ(λ) be defined by
(16). The curve S1 is described by (x(λ), y(λ)) for λ < 0, and curve S2 is described by
(x(λ), y(λ)) for λ > 0. Then the curve S1 lies in the first quadrant, and the curve S2

does not pass through the first quadrant.

PROOF. In view of (16), we may observe that x̃(λ) > 0 and ỹ(λ) > 0 for λ < 0. It
follows that the curve S1 lies in the first quadrant. We further observe that x̃(λ) = 0

if, and only if, λ = (d/2)
1/3

, and that ỹ(λ) = 0 if, and only if, λ = (2d)
1/3

. Then

x̃((2d)
1/3

) < 0 and ỹ((d/2)
1/3

) < 0. Since S2 is strictly decreasing, we can see that
any point in the first quadrant does not lie on the curve S2. The proof is complete.

By Lemma 3.1, the graph S2 cannot intersect with the graph S1. By Theorems 3.11
and 3.17 in [3], we can see that the dual set of order 1 of S1 is R2\

(
∧(S11χ(0,∞)) ⊕ ∨(S12)

)
,

the dual set of order 2 of S1 is

{(x, y) ∈ R2 : x > 3d1/3 and y = S1i(x) for some i = 1, 2}

and the dual set of order 3 of S1 is ∧(S11χ(0,∞)) ⊕ ∨(S12) (see Figure 3(a)). By
Theorem 3.20 in [3], the dual set of order 0 of S2 is ∨(S2), the dual set of order 1 of
S2 is {(x, y) ∈ R2 : y = S2(x)}, and the dual set of order 2 of S2 is ∧(S2) (see Figure
3(b))
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(a) (b)

Figure 3

By Theorem 2.2, we note that for any i, j ≥ 0 with i+ j ≤ 3, (x̃, ỹ) ∈ Ωij(d) if, and
only if (x̃, ỹ) is the dual point of order j of S1 and is the dual point of order i of S2.
So we have the following theorem.

THEOREM 3.2. Assume that d > 0. Let x̃(λ) and ỹ(λ) be defined by (16). Then

Ω01(d) = ∨(S3)\
(
∧(S1χ(3d1/3,∞)) ⊕∨(S2)

)
, (19)

Ω11(d) =
{
(x, y) ∈ R2 : y = S3(x)

}
, (20)

Ω02(d) =
{
(x, y) ∈ R2 : y = S1(x) or y = S2(x)

}
, (21)

Ω21(d) = ∧(S3), (22)

and

Ω03(d) = ∧(S1χ(3d1/3,∞)) ⊕ ∨(S2) (23)

where the curve S1 is described by (x̃(λ), ỹ(λ)) for λ ≤ −d1/3, S2 is described by
(x̃(λ), ỹ(λ)) for −d1/3 < λ < 0 and S2 is described by (x̃(λ), ỹ(λ)) for λ > 0. See
Figure 4.

Figure 4
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4 Main Results

We recall the equation (8). Let

Ω(τ1, τ2) =
{
(x, y) ∈ R2 : (8) has no real roots

}

for τ1, τ2 ≥ 0. We apply the Cheng-Lin envelope method to find the set Ω(τ1, τ2) for
τ1, τ2 ≥ 0. For each λ ∈ R, let Lλ be the straight line in the plane defined by

Lλ : xλe−λτ1 + ye−λτ2 = −λ2 . (24)

Note that Lλ defined by (24) is of the form (9) and

α′(λ)β(λ) − α(λ)β′(λ) = e−λ(τ1+τ2)(1 + (τ2 − τ1)λ) (25)

for λ ∈ R. In view of (25), we may consider the following two cases: τ1 = τ2 and
τ1 6= τ2.

4.1 The case τ1 = τ2

From (25), α′(λ)β(λ) − α(λ)β′(λ) 6= 0 for λ ∈ R. From (10), we let C be the curve
defined by the parametric functions

x(λ) =
(
−τ1λ2 + 2λ

)
eλτ1 and y(λ) =

(
τ1λ

3 + λ2
)
eλτ1 for λ ∈ R. (26)

By Theorem 2.1, C is the envelope of the family {Lλ : λ ∈ R} where Lλ is defined by
(24). We have

(x(0), y(0)) = (0, 0),

lim
λ→−∞

(x(λ), y(λ)) = (0, 0) , lim
λ→∞

(x(λ), y(λ)) = (−∞,∞),

x′(λ) = −eλτ1
(
τ2
1λ

2 + 4τ1λ+ 2
)

and y′(λ) = λeλτ1
(
τ2
1λ

2 + 4τ1λ + 2
)

for λ ∈ R. Furthermore,

y′(λ)

x′(λ)
= −λ and

d
dλ

(
y′(λ)
x′(λ)

)

x′(λ)
=

e−τ1λ

τ2
1 λ

2 + 4τ1λ+ 2
(27)

for λ 6= λ1 and λ 6= λ2 where

λ1 =
−2 −

√
2

τ1
and λ2 =

−2 +
√

2

τ1
.

Then x is strictly increasing on (λ1, λ2) and strictly decreasing on (−∞, λ1)∪ (λ2,∞),
and y is strictly increasing on (λ1, λ2) ∪ (0,∞) and strictly decreasing on (−∞, λ1) ∪
(λ2, 0). We can see that C is composed of three pieces C1, C2 and C3 restricted
respectively to (−∞, λ1], (λ1, λ2] and (λ2,∞). C1 is the graph of a function y = C1(x)
which is strictly increasing, strictly convex, and smooth over [x(λ1), 0); C2 is the graph
of a function y = C2(x) which is strictly increasing, strictly concave and smooth over
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(x(λ1), x(λ2)]; and C3 is the graph of a function y = C3(x) which is strictly convex and
smooth over (−∞, x(λ2)). See Figure 5. We have

C
(v)
1 (x(λ1)) = C

(v)
2 (x(λ1)

+) and C
(v)
2 (x(λ2)) = C

(v)
3 (x(λ2)

−), v = 1, 2.

Furthermore, C3˜H−∞ by Lemma 2.3 and (27). In view of Theorem (2.2), Ω(τ1, τ1) is
the intersection of dual sets of order 0 of C1, C2, and C3. By Theorem 3.7 in [3], the
dual set of order 0 of C1 is

∨(Lλ1
) ⊕∨(C1) ∪ {(0, y) : y ≥ 0} ∪

{
∧(Lλ1

χ[0,∞)) ∪ {(0, y) : y < 0}
}
.

See Figure 5(a). By Theorem A.3 in [3], the intersection of dual sets of order 0 of C2

and C3 is ∨(Lλ1
) ⊕ ∨(C3). See Figure 5(b). So we have Ω(τ1, τ1) = ∨(C3χ(−∞,0]). See

Figure 5(c).

(a) (b) (c)

Figure 5: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorems 3.7
and A.5) to yield (c).

THEOREM 4.1. Assume that τ1 = τ2. Let x(λ) and y(λ) be defined by (26). Then
the equation (8) has no real roots if, and only if, (x, y) ∈ ∨(C) where the curve C is
described by (x(λ), y(λ)) for λ ≥ 0.

4.2 The case τ1 6= τ2

Let λ∗ = 1/(τ1 − τ2). From (10), we let C be the curve defined by the parametric
functions

x(λ) = − τ2λ+ 2

1 + (τ2 − τ1)λ
λeλτ1 and y(λ) =

τ1λ
3 + λ2

1 + (τ2 − τ1)λ
eλτ2 (28)

for λ ∈ R\{λ∗}. We have
(x(0), y(0)) = (0, 0) ,

lim
λ→−∞

(x(λ), y(λ)) =






(0, 0) if τ1τ2 6= 0
(∞, 0) if τ2 > τ1 = 0
(0,−∞) if τ1 > τ2 = 0

,
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lim
λ→∞

(x(λ), y(λ)) =






(−∞,∞) if τ2 ≥ τ1 > 0
(−∞,∞) if τ2 > τ1 = 0
(∞,−∞) if τ1 > τ2 > 0
(∞,−∞) if τ1 > τ2 = 0

,

lim
λ→λ−

∗

(x(λ), y(λ)) =






(∞,∞) if τ1 < τ2 < 2τ1
(−∞,−∞) if 2τ1 < τ2
(−∞,∞) if τ2 < τ1

,

and

lim
λ→λ+

∗

(x(λ), y(λ)) =






(−∞,−∞) if τ1 < τ2 < 2τ1
(∞,∞) if 2τ1 < τ2
(∞,−∞) if τ2 < τ1

.

We note that

x′(λ) =
−eλτ1g(λ)

(1 + (τ2 − τ1)λ)
2

and y′(λ) =
λeλτ2g(λ)

(1 + (τ2 − τ1)λ)
2

for λ ∈ R\{λ∗} (29)

where
g(λ) = τ1τ2(τ2 − τ1)λ

3 + (τ2
2 − 2τ2

1 + 2τ1τ2)λ
2 + 2(τ1 + τ2)λ + 2. (30)

We observe that

g(λ∗) =
2τ1 − τ2
τ1 − τ2

. (31)

Let Σ(τ1, τ2) = {λ ∈ R : g(λ) = 0}. Then

y′(λ)

x′(λ)
= −λe(τ2−τ1)λ and

d
dλ

(
y′(λ)
x′(λ)

)

x′(λ)
=
e(τ2−2τ1)λ (1 + (τ2 − τ1)λ)

3

g(λ)
(32)

for λ ∈ R\Σ(τ1, τ2) and λ 6= λ∗. We need to further analyze the function g in order to
understand the standard properties of the curve C. Therefore, we consider five cases.
Case 1: 0 = τ2 < τ1; Case 2: 0 = τ1 < τ2; Case 3: 2τ1 = τ2; Case 4: 0 < τ1 < τ2 and
2τ1 6= τ2; and Case 5: 0 < τ2 < τ1.

Case 1. In this case, we note that

g(λ) = −2
(
τ2
1λ

2 − τ1λ − 1
)

for λ ∈ R.

Then g(λ) has two real roots λ1 and λ2 where

λ1 =
1 −

√
5

2τ1
and λ2 =

1 +
√

5

2τ1
.

Clearly, λ1 < 0 < λ∗ < λ2. In view of (29), we can see that x(λ) is strictly increasing
on (−∞, λ1)∪ (λ2,∞) and strictly decreasing on (λ1, λ∗)∪ (λ∗, λ2), and y(λ) is strictly
increasing on (−∞, λ1) ∪ (0, λ∗)∪ (λ∗, λ2) and strictly decreasing on (λ1, 0)∪ (λ2,∞).
We can further see that C is composed of four pieces C1, C2, C3 and C4 restricted
respectively to (−∞, λ1), [λ1, λ∗), (λ∗, λ2] and (λ2,+∞). Then C1 is the graph of a
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function y = C1(x) which is strictly increasing, strictly concave, and smooth over
(0, x(λ1)); C2 is the graph of a function y = C2(x) which is strictly convex and smooth
over (−∞, x(λ1)]; C3 is the graph of a function y = C3(x) which is strictly decreasing,
strictly concave, and smooth over [x(λ2), x(λ∗)); and C4 is the graph of a function
y = C4(x) which is strictly decreasing, strictly convex, and smooth over (x(λ2),∞).
See Figure 6. We have

C
(v)
1 (x(λ1)

−) = C
(v)
2 (x(λ1)) and C

(v)
3 (x(λ2)) = C

(v)
4 (x(λ2)

+), v = 1, 2.

By Lemma 2.3 and (32), C1˜H0+ and C4˜H+∞. By Lemma 2.4, we can see that the
intersection of dual sets of order 0 of C1 and C2 is

∨(C2χ(−∞,0]) ∪ {∧(C1) ⊕ ∧(Lλ∗
)} .

See Figure 6(a). By Theorem A.8 in [3], we can further see that the intersection of
dual sets of order 0 of C3 and C4 is

∨(C4) ⊕∨(Lλ∗
).

See Figure 6(b). By Theorem (2.2), Ω(τ1, 0) = ∨(C2χ(−∞,0]). See Figure 6(c).

(a) (b) (c)

Figure 6: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorem A.8]
and Lemma 2.4) to yield (c).

THEOREM 4.2. Assume that 0 = τ2 < τ1. Let x(λ) and y(λ) be defined by (28).
Then Ω(τ1, 0) = ∨(C) where the curve C is described by (x(λ), y(λ)) for 0 ≤ λ < 1/τ1.

Case 2. In this case, we note that λ∗ < 0 and

g(λ) = τ2
2λ

2 + 2τ2λ + 2 > 0 for λ ∈ R.

By (29), we can see that x(λ) is strictly decreasing on R\{λ∗}, and y(λ) is strictly
increasing on (0,∞) and strictly decreasing on (−∞, λ∗) ∪ (λ∗, 0). We can further see
that C is composed of two pieces C1 and C2 restricted respectively to (−∞, λ∗) and
(λ∗,∞). Then C1 is the graph of a function y = C1(x) which is strictly increasing,
strictly concave, and smooth over R; and C2 is the graph of a function y = C2(x)
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which is strictly convex and smooth over R. By Lemma 2.3 and (32), C2˜H−∞. We
can apply Theorems 3.18 and 3.19 in [3] respectively to see the dual set of order 0
of C1 and the dual set of order 0 of C2. See Figures 7(a) and (b). By Theorem 2.2,
Ω(0, τ2) = ∨(C2). See Figure 7(c).

(a) (b) (c)

Figure 7: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorems 3.18
and 3.19] to yield (c).

THEOREM 4.3. Assume that 0 = τ1 < τ2. Let x(λ) and y(λ) be defined by (28).
Then Ω(0, τ2) = ∨(C) where the curve C is described by (x(λ), y(λ)) for λ > 0.

Case 3. In this case, we note that x(λ) = −2λeλτ1 and y(λ) = λ2e2λτ1 for λ ∈
R\{λ∗}. Furthermore, we have

lim
λ→λ−

∗

(x(λ), y(λ)) =

(
2

τ1e
,

1

τ2
1 e

2

)
.

Then the curve C is the graph of a function y = C(x) = x2/4 for x < 2/τ1e. Clearly,
C˜H−∞. By Theorem 3.11 in [3], Ω(τ1, τ2) = ∨(C) ⊕ ∨(Lλ∗

). See Figure 8.

Figure 8
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THEOREM 4.4. Assume that 2τ1 = τ2. Then

Ω(τ1, τ2) =

{
(x, y) ∈ R2 : y >

x2

2
and x <

2

τ1e

}

∪
{

(x, y) ∈ R2 : y ≥
(
e

τ1
x− 1

τ2
1

)
e
−

τ2
τ1 and x ≥ 2

τ1e

}
.

Case 4. Assume that 0 < τ1 < τ2 and and 2τ1 6= τ2. Then g is a cubic polynomial
with positive leading term. Let

A =
τ2
2 − 2τ2

1 + 2τ1τ2
τ1τ2(τ2 − τ1)

, B =
2(τ1 + τ2)

τ1τ2(τ2 − τ1)
and D =

2

τ1τ2(τ2 − τ1)
. (33)

Clearly, B > 0 and D > 0. We note that

A =
(1 +

√
3)τ1 + τ2

τ1τ2(τ2 − τ1)

(
(1 −

√
3)τ1 + τ2

)
>

(1 +
√

3)τ1 + τ2
τ1τ2(τ2 − τ1)

(2 −
√

3)τ1 > 0.

By Lemma 3.1, (A,B) belongs to one of Ω01(D), Ω02(D) and Ω03(D). Therefore, we
need to consider three cases. Case 4-1: (A,B) ∈ Ω01(D); Case 4-2: (A,B) ∈ Ω02(D);
and Case 4-3: (A,B) ∈ Ω03(D).

Case 4-1. In this case, the cubic polynomial

λ3 +Aλ2 +Bλ +D = 0

has a unique root λ1 with λ1 < 0. It follows that g(λ) < 0 for λ < λ1 and g(λ) > 0 for
λ > λ1. If τ2 > 2τ1, by (31), we may see that λ1 < λ∗ < 0 because of g(λ∗) > 0. Then
x is strictly increasing on (−∞, λ1) and strictly decreasing on (λ1, λ∗)∪ (λ∗ ,∞), and y
is strictly increasing on (−∞, λ1) ∪ (0,∞) and strictly decreasing on (λ1, λ∗) ∪ (λ∗, 0).
We may see that C is composed of three pieces C1, C2 and C3 restricted respectively
to (−∞, λ‘), [λ1, λ∗) and (λ∗,∞). Then C1 is the graph of a function y = C1(x) which
is strictly increasing, strictly convex, and smooth over (0, x(λ1)); C2 is the graph of
a function y = C2(x) which is strictly increasing, strictly concave, and smooth over
(−∞, x(λ1)]; and C3 is the graph of a function y = C3(x) which is strictly convex and
smooth over (−∞,∞). We have

C
(v)
1 (x(λ̃)) = C

(v)
2 (x(λ1)

−), v = 1, 2.

By Lemma 2.3 and (32), C3˜H−∞. See Figure 9. By Theorem A.5 in [3], the intersec-
tion of dual sets of order 0 of C1 and C2 is

{∨(C1) ⊕∨(Lλ∗
) ⊕∨(Θ0)} ∪ {∧(C2) ⊕ ∧(Θ0)} .

See Figure 9(a). By Theorem 3.19 in [3], the dual set of order 0 of C3 is ∨(C3). See
Figure 9(b). Therefore, Ω(τ1, τ2) = ∨(C1) ⊕∨(C3). See Figure 9(c).
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(a) (b) (c)

Figure 9: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorems A.5
and 3.19]) to yield (c).

If 2τ1 > τ2, by (31), we may see that λ∗ < λ1 < 0 because of g(λ∗) < 0. Then x

is strictly increasing on (−∞, λ∗) ∪ (λ∗, λ̃) and strictly decreasing on (λ̃,∞), and y is

strictly increasing on (−∞, λ∗) ∪ (λ∗, λ̃) ∪ (0,∞) and strictly decreasing on (λ̃, 0). We
may see that C is composed of three pieces C1, C2 and C3 restricted respectively to
(−∞, λ∗), (λ∗, λ̃) and [λ̃,∞). Then C1 is the graph of a function y = C1(x) which is
strictly increasing, strictly convex, and smooth over (0,∞);C2 is the graph of a function

y = C2(x) which is strictly increasing, strictly concave, and smooth over (−∞, x(λ̃));
and C3 is the graph of a function y = C3(x) which is strictly convex and smooth over

(−∞, λ̃]. We have

C
(v)
2 (x(λ̃)−) = C

(v)
3 (x(λ̃)), v = 1, 2.

By Lemma 2.3 and (32), C3˜H−∞. By Theorems 3.10 and A.8 in [3], Ω(τ1, τ2) =
∨(C1) ⊕ ∨(C3). See Figure 10.

(a) (b) (c)

Figure 10: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorems 3.10
and A.8] to yield (c).

THEOREM 4.5. Assume that 0 < τ1 < τ2 and (A,B) ∈ Ω01(D) where A, B and D
are defined by (33). Let λ1 be the root of g defined by (30). Then Ω(τ1, τ2) = ∨(C1)⊕
∨(C2) where the curve C1 is described by (x(λ), y(λ)) for λ < min{1/(τ1 − τ2), λ1},
and curve C2 is described by (x(λ), y(λ)) for λ > max{1/(τ1 − τ2), λ1}.
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Case 4-2. In this case, we may know that the cubic polynomial

λ3 +Aλ2 +Bλ +D = 0

has exactly two distinct negative roots λ1 and λ2 with λ1 < λ2. Then either g(λ) < 0
for λ < λ1 and g(λ) > 0 for λ > λ1 and λ 6= λ2, or g(λ) > 0 for λ > λ2 and g(λ) < 0
for λ < λ2 and λ 6= λ1. See Figure 11.

(a) (b)

Figure 11

Assume that g(λ) < 0 for λ < λ1 and g(λ) > 0 for λ > λ1 and λ 6= λ2. We may
note that g′(λ1) 6= 0 and g′(λ2) = 0. If 2τ1 < τ2, we may see that λ1 < λ∗ < 0
because of g(λ∗) > 0. Then x is strictly increasing on (−∞, λ1) and strictly decreasing
on (λ1, λ∗) ∪ (λ∗,∞), and y is strictly increasing on (−∞, λ1) ∪ (0,∞) and strictly
decreasing on (λ1, λ∗) ∪ (λ∗, 0). We can see that C is composed of three pieces C1,
C2,and C3 restricted respectively to (−∞, λ1), [λ1, λ∗) and (λ∗,∞). Then C1 is the
graph of a function y = C1(x) which is strictly increasing, strictly convex and smooth
over (0, x(λ1)); C2 is the graph of a function y = C2(x) which is strictly increasing,
strictly concave and smooth over (−∞, x(λ1)]; and C3 is the graph of a function y =
C3(x) which is strictly convex and smooth over (−∞,∞). We have

C
(v)
1 (x(λ1)

−) = C
(v)
2 (x(λ1)) for v = 1, 2.

By Lemma 2.3 and (32), C3˜H−∞. The graph of C is similar to the graph described
in Figure 9. So Ω(τ1, τ2) = ∨(C1) ⊕∨(C3).

If 2τ1 > τ2, we may see that λ∗ < λ1 < 0 because of g(λ∗) < 0. Then x is
strictly increasing on (−∞, λ∗) ∪ (λ∗, λ1) and strictly decreasing on (λ1,∞), and y is
strictly increasing on (−∞, λ∗) ∪ (λ∗, λ1) ∪ (0,∞) and strictly decreasing on (λ1, 0).
We may see that C is composed of three pieces C1, C2,and C3 restricted respectively
to (−∞, λ∗), (λ∗, λ1], and (λ1,∞). Then C1 is the graph of a function y = C1(x)
which is strictly increasing, strictly convex, and smooth over (0,∞); C2 is the graph
of a function y = C2(x) which is strictly increasing, strictly concave, and smooth over
(−∞, x(λ1)]; and C3 is the graph of a function y = C3(x) which is strictly convex and
smooth over (−∞,∞). We have

C
(v)
2 (x(λ1)

−) = C
(v)
3 (x(λ1)) for v = 1, 2.
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By Lemma 2.3 and (32), C3˜H−∞. The graph of C is similar to the graph described
in Figure 10. So Ω(τ1, τ2) = ∨(C1) ⊕∨(C3).

Assume that g(λ) > 0 for λ > λ2 and g(λ) < 0 for λ < λ2 and λ 6= λ1. By
discussions similar to those above, we may obtain the same conclusion, Ω(τ1, τ2) =
∨(C1) ⊕ ∨(C3).

THEOREM 4.6. Assume that 0 < τ1 < τ2 and (A,B) ∈ Ω02(D) where A, B
and D are defined by (33). Let λ1 be the root of g defined by (30) with g′(λ1) 6= 0.
Then Ω(τ1, τ2) = ∨(C1) ⊕ ∨(C3). where curve C1 is described by (x(λ), y(λ)) for
λ < min{1/(τ1−τ2), λ1} and curve C2 is described by (x(λ), y(λ)) for λ > max{1/(τ1−
τ2), λ1}.

Case 4-3. In this case, we may know that the cubic polynomial

λ3 +Aλ2 +Bλ +D = 0

has three distinct negative roots λ1, λ2 and λ3 with λ1 < λ2 < λ3. Then g(λ) > 0 on
(λ1, λ2) ∪ (λ3,∞) and g(λ) < 0 on (−∞, λ1) ∪ (λ2, λ3). We note that

g′(λ) = 3τ1τ2(τ2 − τ1)λ
2 + 2(τ2

2 − 2τ2
1 + 2τ1τ2)λ+ 2(τ1 + τ2)

for λ ∈ R. Since g(λ2) = g(λ3) = 0, by the Mean Value Theorem, we may see that
g′(λ) has a real roots λ+ such that λ2 < λ+ < λ3 and

λ+ =
−(τ2

2 − 2τ2
1 + 2τ1τ2) +

√
(2τ1 − τ2) (2τ3

1 − τ3
2 )

3τ1τ2(τ2 − τ1)
.

We observe that
(2τ1 − τ2) (τ1 + τ2)

2
= 2τ3

1 − τ3
2 + 3τ2

1 τ2. (34)

If 2τ1 < τ2, by (31), we may see that g(λ∗) > 0. Thus either λ1 < λ∗ < λ2 or
λ3 < λ∗ < 0. We claim that the former case λ1 < λ∗ < λ2 holds. It is sufficient
to prove that λ+ > λ∗. In view of (34), we may see that (2τ1 − τ2)

2
(τ1 + τ2)

2
<

(2τ1 − τ2)
(
2τ3

1 − τ3
2

)
, which implies that

−
(
τ2
2 − 2τ2

1 − τ1τ2
)

+
√

(2τ1 − τ2) (2τ3
1 − τ3

2 )

> (2τ1 − τ2) (τ1 + τ2) +

√
(2τ1 − τ2)

2
(τ1 + τ2)

2

= 0.

Then

λ+ =
−(τ2

2 − 2τ2
1 + 2τ1τ2) +

√
(2τ1 − τ2) (2τ3

1 − τ3
2 )

3τ1τ2(τ2 − τ1)
>

1

τ1 − τ2
= λ∗

We have verified our assertion. We may now see that C is composed of five pieces C1,
C2, C3, C4 and C5 restricted respectively to (−∞, λ1), [λ1, λ∗), (λ∗, λ2), [λ2, λ3] and
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(λ3,∞). C1 is the graph of a function y = C1(x) which is strictly increasing, strictly
convex, and smooth over (0, x(λ1)); C2 is the graph of a function y = C2(x) which
is strictly increasing, strictly concave, and smooth over (−∞, x(λ1)]; C3 is the graph
of a function y = C3(x) which is strictly increasing, strictly convex and smooth over
(x(λ2),∞); C4 is the graph of a function y = C4(x) which is strictly increasing, strictly
concave, and smooth over [x(λ2), x(λ3)]; and C5 is the graph of a function y = C5(x)
which is strictly convex and smooth over (−∞, x(λ3)]. We have

C
(v)
2 (x(λ1)) = C

(v)
3 (x(λ1)

−),

C
(v)
3 (x(λ2)

+) = C
(v)
4 (x(λ2)) and C

(v)
4 (x(λ3)) = C

(v)
5 (x(λ3)

−)

for v = 1, 2. By Lemma 2.3 and (32), C5˜H−∞. By Theorem A.5 in [3], the intersection
of dual sets of order 0 of C1 and C2 can be seen in Figure 12(a). By Theorem A.16
in [3], the intersection of dual sets of order 0 of C3, C4 and C5 can be seen in Figure
12(b). So Ω(τ1, τ2) = ∨(C1) ⊕∨(C3).⊕∨ (C5). See Figure 12(c).

(a) (b) (c)

Figure 12: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorems A.5
and A.16]) to yield (c).

If 2τ1 > τ2, by (31), we may see that g(λ∗) < 0. Thus either λ2 < λ∗ < λ3 or
λ∗ < λ1. We claim that λ2 < λ∗ < λ3. It is sufficient to prove that λ+ < λ∗. In view
of (34), we can see that (2τ1 − τ2)

2
(τ1 + τ2)

2
> (2τ1 − τ2)

(
2τ3

1 − τ3
2

)
, which implies

that

−
(
τ2
2 − 2τ2

1 − τ1τ2
)

+
√

(2τ1 − τ2) (2τ3
1 − τ3

2 ) < 0

Then

λ+ =
−(τ2

2 − 2τ2
1 + 2τ1τ2) +

√
(2τ1 − τ2) (2τ3

1 − τ3
2 )

3τ1τ2(τ2 − τ1)
<

1

τ1 − τ2
= λ∗.

We have verified our assertion. By analyzing the monotonicity of x and y, we may
see that C is composed of five pieces C1, C2, C3, C4 and C5 restricted respectively to
(−∞, λ1), [λ1, λ2], (λ2, λ∗), (λ∗, λ3] and (λ3,∞). Then C1 is the graph of a function
y = C1(x) which is strictly increasing, strictly convex, and smooth over (0, x(λ1)); C2

is the graph of a function y = C2(x) which is strictly increasing, strictly concave, and
smooth over [x(λ2), x(λ1)]; C3 is the graph of a function y = C3(x) which is strictly
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increasing, strictly convex and smooth over (x(λ2),∞); C4 is the graph of a function
y = C4(x) which is strictly increasing, strictly concave, and smooth over (−∞, x(λ3)];
and C5 is the graph of a function y = C5(x) which is strictly convex and smooth over
(−∞, x(λ3)). We have

C
(v)
1 (x(λ1)

−) = C
(v)
2 (x(λ1)),

C
(v)
2 (x(λ2)) = C

(v)
3 (x(λ2)

+) and C
(v)
4 (x(λ3)) = C

(v)
5 (x(λ3)

−)

for v = 1, 2. By Lemma 2.3 and (32), C5˜H−∞. By Theorem A.8 in [3] and Lemma
2.5, Ω(τ1, τ2) = ∨(C1) ⊕ ∨(C3) ⊕ ∨(C5). See Figure 13(c).

(a) (b) (c)

Figure 13: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorem A.8]
and Lemma 2.5) to yield (c).

THEOREM 4.7. Assume that 0 < τ1 < τ2 and (A,B) ∈ Ω03(D) where A, B
and D are defined by (33). Let λ1, λ2 and λ3 be the roots of g defined by (30).
Then Ω(τ1, τ2) = ∨(C1) ⊕ ∨(C3) ⊕ ∨(C5) where curve C1 is described by (x(λ), y(λ))
for λ < λ1, curve C2 is described by (x(λ), y(λ)) for min{1/(τ1 − τ2), λ2} < λ <
max{1/(τ1 − τ2), λ2}, and curve C3 is described by (x(λ), y(λ)) for λ > λ3.

Case 5. Assume that 0 < τ2 < τ1. Let G be a function defined by G(λ) = g(−λ).
We can see that G has exactly m positive roots if, and only if g has exactly m negative
roots. We recall the numbers A, B and D defined by 33. Then

G(λ) = τ1τ2(τ1 − τ2)
(
λ3 − Aλ2 + Bλ −D

)
.

We note that B < 0 and −D > 0. Then (−A,B) ∈ Ω01(−D) or (−A,B) ∈ Ω11(−D)
or (−A,B) ∈ Ω21(−D). If (−A,B) ∈ Ω01(−D)∪Ω11(−D), then G has a negative root
λ1, and there exists λ2 > 0 such that G(λ) < 0 for λ < λ1 and G(λ) > 0 for λ > λ1

and λ 6= λ2. See Figure 14.
It implies that g(λ) < 0 for λ > −λ1 and g(λ) > 0 for λ < −λ1 and λ 6= −λ2. Then

x is strictly decreasing in (−∞, 0]. It is impossible that

x(−∞) = 0 > x(0) = 0.
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(a) (b)

Figure 14

So we may assume that (−A,B) ∈ Ω21(−D). Then g has three real roots λ1, λ2 and
λ3 with λ1 < λ2 < 0 < λ3, and g(λ) > 0 on (−∞, λ1)∪ (λ2, λ∗)∪ (λ∗, λ3) and g(λ) < 0
on (λ1, λ2) ∪ (λ3,∞). In view of (31), we can see that λ1 < λ2 < 0 < λ∗ < λ3. By
analyzing the monotonicity of x and y, we may see that C is composed of five pieces C1,
C2, C3, C4,and C5 restricted respectively to (−∞, λ1), [λ1, λ2], (λ2, λ∗), (λ∗, λ3] and
(λ3,∞). C1 is the graph of a function y = C1(x) which is strictly increasing, strictly
convex, and smooth over (x(λ1), 0); C2 is the graph of a function y = C2(x) which
is strictly increasing, strictly concave, and smooth over [x(λ1), x(λ2)]; C3 is the graph
of a function y = C3(x) which is strictly convex and smooth over (−∞, x(λ2)); C4 is
the graph of a function y = C4(x) which is strictly decreasing, strictly concave, and
smooth over [x(λ3),∞); and C5 is the graph of a function y = C5(x) which is strictly
decreasing, strictly convex, and smooth over (x(λ3),∞). We have

C
(v)
1 (x(λ1)

+) = C
(v)
2 (x(λ1))

C
(v)
2 (x(λ2)) = C

(v)
3 (x(λ2)

−) and C
(v)
4 (x(λ1)) = C

(v)
5 (x(λ1)

+)

for v = 1, 2. By Lemma 2.3 and (32), C5˜H−∞. By Theorem A.8 in [3] and Lemma
2.5, Ω(τ1, τ2) = ∨(C3χ(−∞,0]). See Figure 15.

THEOREM 4.8. Assume that 0 < τ2 < τ1. Let λ1 be the positive root of g defined
by (30). Then Ω(τ1, τ2) = ∨(D). where the curve C is described by (x(λ), y(λ)) for
0 ≤ λ < 1/(τ1 − τ2).

5 Examples

We illustrate our results with two examples.

EXAMPLE 5.1. Consider the equation

λ2 + aλe−λ + be−3λ = 0 (35)
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(a) (b) (c)

Figure 15: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorem A,8]
and Lemma 2.5) to yield (c).

where a, b ∈ R. In view of (33), A = 13/6, B = 4/3 and D = 1/3. Let curve S1 be
described by (x̃(λ), ỹ(λ)) for λ < 0 and curve S2 by (x̃(λ), ỹ(λ)) for λ > 0 where

x̃(λ) = −2λ+
1

3λ2
and ỹ(λ) = λ2 − 2

3λ
.

We note that
x̃(−D1/3) = 32/3 and ỹ(−D1/3) = 31/3.

Then A > x̃(−D1/3) and B < ỹ(−D1/3). See Figure 16. By Theorem 3.2, we may see
that (A,B) ∈ Ω01(D). We note that

g(λ) = 6λ3 + 13λ2 + 8λ+ 2 for λ ∈ R.

Then g has the unique negative root λ1 ≈ −1.3719. Let curve C1 be described by
(x(λ), y(λ)) for λ < λ1, and curve C2 by (x(λ), y(λ)) for λ > −0.5 where

x(λ) = −3λ+ 2

1 + 2λ
λeλ and y(λ) =

λ3 + λ2

1 + 2λ
e3λ.

By Theorem 4.5, Ω(1, 3) = ∨(C1) ⊕ ∨(C2). See Figure 17. So (a, b) ∈ ∨(C1) ⊕ ∨(C2)
if, and only if, the equation (35) has no real roots. As an application, we see that
(a, b) ∈ ∨(C1) ⊕∨(C2) if, and only if, the all solutions of delay differential equation

N ′′(t) + aN ′(t − 1) + bN(t− 3) = 0

are oscillatory. On the other hand, we may also consider the oscillation of the impulsive
delay differential equation

x′′(t) + ax′(t− 1) + bx(t− 3) = 0, t ∈ [0,∞)\Γ, (36)

x(t+k ) = akx(tk), k ∈ N, (37)

x′(t+k ) = akx
′(tk), k ∈ N, (38)

where ak > 0 for k ∈ N. Indeed, we assume that A(t− 1, t) = α1 and A(t − 3, t) = α2

for t ≥ 0. By Lemma 1.1, all solutions of system (36)-(38) are oscillatory if, and only
if, (a/α1, b/α2) ∈ ∨(C1) ⊕ ∨(C2).
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Figure 16 Figure 17

EXAMPLE 5.2. Consider the equation

λ2 + aλe−2τλ + be−τλ = 0 (39)

where a, b ∈ R. Let the curve C be described by (x(λ), y(λ)) for 0 ≤ λ < 1/τ where

x(λ) = −τλ + 2

1 − τλ
λe2λτ and y(λ) =

2τλ3 + λ2

1 − τλ
eλτ .

By Theorem 4.8, we may see that (a, b) ∈ ∨(C) if, and only if equation (39) has no real
roots. We will give a criterion in order to facilitate determination. Let 0 < k < 1. Let

m(k) =
y( 1

kτ
)

x( 1
kτ

)
=

k + 2

− (2k+ 1) k2τe
1
k

.

Since C is strictly convex, we may see that the line segment Lk(x) = m(k)x on
(x( 1

kτ
), 0) lies above the curve C. In other words, the point (a, b) satisfies x( 1

kτ
) < a < 0

and L(a) ≤ b belongs to ∨(C). Therefore, if there exists 0 < k < 1 such that

− 2k + 1

(k − 1) kτ
e

2
k < a < 0 and

− (k + 2)

(2k + 1)k2τe
1
k

a < b,

then equation (39) has no real roots. See Figure 18.

6 Appendix

Before proving Lemma 1.1, we need the definition of a solution of impulsive delay
differential equation (3)-(5) and some basic concepts. Let Λ1 and Λ2 be two subsets of
R. We first define two sets

PC(Λ1,Λ2) = {ϕ : Λ1 → Λ2|ϕ is continuous in each interval Λ1 ∩ (tk, tk+1], k ∈ N ∪ {0}
with discontinuities of the first kind only}

and

PC ′(Λ1,Λ2) = {ϕ ∈ PC(Λ1,Λ2)|ϕ is continuously differentiable a.e. in Λ1}
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Figure 18

DEFINITION 6.1. Let Λ be an interval in [0,∞), T = inf Λ and rT = min{T −
τ1, T − τ2}. For any φ ∈ PC([rT , T ],R), a function x defined on [rT , T ] ∪ Λ is said to
be a solution of system (3)-(5) on Λ satisfying the initial value condition x(t) = φ(t)
for t ∈ [rT , T ] if

(i) x, x′ ∈ PC ′(Λ,R);

(ii) x(t) satisfies (3) a.e. on Λ; and

(iii) x(t) satisfies (4) and (5) on Λ.

DEFINITION 6.2. Let a function ϕ(t) be defined for all sufficiently large t. We
say that ϕ(t) is eventually positive (or negative) if there exists a number T such that
ϕ(t) > 0 (respectively ϕ(t) < 0) for every t ≥ T. We say that ϕ(t) is nonoscillatory if
ϕ(t) is eventually positive or eventually negative. Otherwise, ϕ(t) is called oscillatory.

Proof of Lemma 1.1. Let τ = max{τ1, τ2}. Assume that the system (3)-(5) has
a nonoscillatory solution N(t). We may assume that N(t) > 0 for t ≥ −τ . Let
y(t) = N(t)/A(0, t) for t ≥ 0. We note that

y(t+k ) =
N(t+k )

A(0, t+k )
=

akN(tk)

akA(0, tk)
= y(tk)

and

y′(t+k ) =
N ′(t+k )

A(0, t+k )
=

akN
′(tk)

akA(0, tk)
= y′(tk)

for k ∈ N. Then y(t) is a continuously differentiable function on [0,∞) and satisfies

y′′(t) +
a

α1
y′(t − τ1) +

b

α2
y(t − τ2)

=
1

A(0, t)

(
N ′′(t) + a

A(t− τ1, t)

α1
N ′(t− τ1) + b

A(t − τ2, t)

α2
N(t − τ2)

)

=
1

A(0, t)
(N ′′(t) + aN ′(t− τ1) + bN(t− τ2))

= 0
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for t ≥ 0. Since y is not oscillatory, we can see that the equation (6) has a real root.
Conversely, assume that λ1 is the real root of equation (6). Let N(t) = A(0, t)eλ1t for
t ≥ −τ . Then

N(t+k ) = A(0, t+k )eλ1t+k = akA(0, tk)eλ1tk = akN(tk)

and

N ′(t+k ) = A(0, t+k )λ1e
λ1t+k = akA(0, tk)λ1e

λ1tk = akN
′(tk)

for k ∈ N. Furthermore,

N ′′(t) + aN ′(t− τ1) + bN(t− τ2)

= A(0, t)eλ1t

(
λ2

1 +
a

A(0, t− τ1)
λ1e

−λ1τ1 +
b

A(0, t− τ2)
e−λ1τ2

)

= A(0, t)eλ1t

(
λ2

1 +
a

α1
λ1e

−λ1τ1 +
b

α2
e−λ1τ2

)

= 0

for t ≥ 0. So N(t) is a positive solution of system (3)-(5). The proof is complete.
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[4] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations with
Applications, Clarendon Press, Oxford, 1991.

[5] Z. M. He and W. G. Ge, Oscillation in second order linear delay differential equa-
tions with nonlinear impulses, Math. Slovaca, 52(2002), 331–341.

[6] S. Y. Huang and S. S. Cheng, Absence of positive roots of sextic polynomials,
Taiwanese J, Math., 15(2011), 2609–2646.

[7] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Dif-
ferential Equations, World Scientific, Singapore, 1989.

[8] W. Luo, J. Luo and L. Debnath, Oscillation of second order quasilinear delay
differential equations with impulses, J. Appl. Math. & Computing, 13(2003), 165–
182.



S. Y. Huang and S. S. Cheng 207

[9] M. Peng and W. Ge, Oscillation criteria for second order nonlinear differential
equations with impulses, Comput. Math. Appl., 39(2000), 217–225.

[10] J. R. Yan, Oscillation properties of a second order impulsive delay differential
equation, Comput. Math. Appl., 47(2004), 253–258.


