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Abstract

This paper shows the existence and uniqueness of a weak solution of a problem
in RN , which involves the p-Laplacian through the Browder Theorem.

1 Introduction

The present paper is concerned with the elliptic problem:

(P) −∆pu+m(x) | u |p−2 u = f(x, u) in RN ,

where 1 < p < N, N ≥ 3, ∆p denotes the p-Laplacian defined by

∆pu = div(| ∇u |p−2 ∇u).

We make the following assumptions.

(m0) m ∈ C(RN ,R) and 0 < m(x) < +∞.

Let γ = p∗

p∗−(q+1) and p
∗ = Np

N−p . There exist a ∈ L
(p∗)′(RN ) and b ∈ L∞(RN ) ∩

Lγ(RN ) such that

(f1) f satisfies
| f(x, s) |≤ a(x) + b(x) | s |q,

where
1 < q ≤ p− 1.

(f2) f : RN × R → R be a carathéodory (CAR) function which is decreasing with
respect to the second variable, i.e.,

f(x, s1) ≤ f(x, s2)

for a.e. x ∈ Ω and s1, s2 ∈ R, s1 ≥ s2.
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The goal of this paper is to prove the following result:

THEOREM 1. Assume that (m0) holds and f ∈ CAR(RN × R) satisfies (f1) and
(f2). Then the problem (P) has a unique weak solution.

When p = 2, the problem (P) is a normal Schrodinger equation which has been
extensively studied. There are several studies of the existence of solutions of (P) on a
bounded domain of RN .We mention the results obtained in [1, 2] and [6] for the case of
bounded domains. In recent years, more and more attention is paid to the quasilinear
elliptic setting on RN . The main diffi culty in the study of p-Laplacian equations in RN
arises from the lack of compactness.
In the squeal, we recall some basic definitions and notations which will be used

throughout the paper. Whereas, the last part of the article is dedicated to the demon-
stration of our main result.

DEFINITION 1.We say that u ∈W 1,p(RN ) is a weak solution of problem (P) if∫
RN
|∇u|p−2∇u∇vdx+

∫
RN

m(x) |u|p−2 uvdx =

∫
RN

f(x, u)vdx

for all v ∈W 1,p(RN ).

For simplicity let X = W 1,p(RN ). According to condition (m0), we can introduce
a new norm defined as follows

‖ u ‖=
(∫

RN
|∇u|p dx+

∫
RN

m(x) |u|p dx
) 1
p

.

DEFINITION 2. Let K be a Banach space. An operator A : K → K verifies

〈Au−Av, u− v〉 ≥ 0 (1)

for any u, v ∈ K is called a monotone operator. An operator A is called strictly
monotone if for u 6= v the strict inequality holds in (1). An operator A is called
strongly monotone if there exists C > 0 such that

〈Au−Av, u− v〉 ≥ C ‖ u− v ‖2

for any u, v ∈ K.

We recall Browder Theorem.

Theorem 3 (cf. [3]). Let A be a reflexive real Banach space. Moreover, let A :
X → X∗ be an operator which is: bounded, demicontinuous, coercive, and monotone
on the space X . Then, the equation A(u) = f has at least one solution u ∈ X for
each f ∈ X∗. If moreover, A is strictly monotone operator, then the equation (P) has
precisely one solution u ∈ X for every f ∈ X∗.
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We define the operator A : X → X∗ by

A := I − F,

where the operators I and F are defined from X into X∗ as

〈I(u), v〉 =

∫
RN
|∇u|p−2∇u∇vdx+

∫
RN

m(x) |u|p−2 uvdx

and

〈F (u), v〉 =

∫
RN

f(x, u)vdx,

for all u, v ∈ X.
By Definition 1, the main tool in searching the weak solutions of (P) is to finding

u ∈ X which satisfies the operator equation Au = 0.

2 Proof of The Main Result

We denote by C and Ci, i = 1, 2... the general positive constants which are the exact
values may change from line to line.

PROOF OF THEOREM 1. In order to apply Browder Theorem, we split the proof
in several steps,
Step1. We prove that A is bounded. We know that the functional

ψ(u) =

∫
RN

1

p
(|∇u|p +m(x) |u|p) dx

is of class C1 (cf. [5]) and I is the derivative operator of ψ in the weak sense, so it
yields I is bounded and continuous. Let u ∈ X, such that ‖ u ‖< K. Using Hölder’s
inequality, we obtain

‖F (x, u)‖X∗
= sup
‖v‖=1

| 〈F (x, u), v〉 |

≤ sup
‖v‖=1

∫
RN

a(x) |v| dx+

∫
RN

b(x) |u|q |v| dx

≤ sup
‖v‖=1


(∫

RN
a(p
∗)′dx

) 1
(p∗)′

+

(∫
RN
|u|p

∗
dx

) q
p∗
(∫

RN
(bv)

p∗
p∗−q dx

) p∗−q
p∗


≤ sup
‖v‖=1

{[(∫
RN

a(p
∗)′dx

) 1
(p∗)′

+

(∫
RN
|u|p

∗
dx

) q
p∗
(∫

RN
bγ
) 1
γ

](∫
RN
|v|p

∗
dx

) 1
p∗
}

≤ C3 ‖a‖(p∗)′ + C4K
q ‖b‖γ ,

hence A is bounded.
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Step 2. We prove that A is demicontinuous. It is well known that the functional

ψ(u) =

∫
RN

(
1

p
(|∇u|p +m(x) |u|p

)
dx

is of class C1. Since I is the Fréchet derivative of ψ hence I is continuous. Now we
check that F is completely continuous that is, if un ⇀ u then F (un)→ F (u) and it is
well be done. Let un is weakly convergent to u in X so un is bounded in X. Set

Bk =
{
x ∈ RN : |x| < k

}
,

so we have |b|Lγ(RN\Bk) converges to zero as n→ +∞. For all v ∈ X we have

∫
RN\Bk

a(x) |v| dx ≤
(∫

RN\Bk
|v|p

∗
dx

) 1
p∗
(∫

RN\Bk
|a|(p

∗)′
dx

) 1
(p∗)′

≤ C ‖v‖
(∫

RN\Bk
|a|(p

∗)′
dx

) 1
(p∗)′

.

Similarly,

∫
RN\Bk

b(x) |u|q |v| dx ≤
(∫

RN\Bk
|u|p

∗
dx

) q
p∗
(∫

RN\Bk
(b(x) |v|)

p∗
p∗−q dx

) p∗−q
p∗

≤
(∫

RN\Bk
|u|p

∗

) q
p∗
(∫

RN\Bk
|v|p

∗

) 1
p∗
(∫

RN\Bk
bγ

) 1
γ

≤ C ‖u‖q ‖v‖
(∫

RN\Bk
b(x)γdx

) 1
γ

.

According to previous inequalities we have,

∣∣∣∣∣
∫
RN\Bk

(f(x, un)− f(x, u))vdx

∣∣∣∣∣ ≤ C ‖v‖
(∫

RN\Bk
b(x)γdx

) 1
γ

+‖v‖
(∫

RN\Bk
|a(x)|(p

∗)′
dx

) 1
(p∗)′

,

which yields that ∫
RN\Bk

(f(x, un)− f(x, u))vdx→ 0

for k suffi ciently large. From the compact embedding W 1,p(Bk) ↪→ Lq(Bk), we can
infer that ∫

Bk

f(x, un)vdx→
∫
Bk

f(x, u)vdx
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and then we have∫
RN

(f(x, un)− f(x, u))vdx =

∫
RN\Bk

(f(x, un)− f(x, u))vdx

+

∫
Bk

(f(x, un)− f(x, u))vdx → 0.

So F is completely continuous and then F is continuous.
Step 3. We prove that A is monotone. We recall the following inequality for p ≥ 2,

x, y ∈ RN (see [4])

|y|p ≥ |x|p + p |x|p−2 x(y − x) +
|y − x|p

2p−1 − 1
.

Let

〈I(u)− I(v), u− v〉 =

∫
RN

(
|∇u|p−2∇udx− |∇v|p−2∇v

)
(∇u−∇v)dx

+

∫
RN

m(x)(|u|p−2 u− |v|p−2 v)(u− v)dx.

We obtain that

〈I(u)− I(v), u− v〉 ≥ 2

p2p−1 − 1

[∫
RN
|∇u−∇v|p dx+

∫
RN

m(x) |u− v|p dx
]

= Cp ‖u− v‖p . (2)

Therefore, A is strongly monotone. ( see e.g. [7]). Further, since f is decreasing with
respect to the second variable,

〈F (u)− F (v), u− v〉 =

∫
RN

(f(x, u)− f(x, v))(u− v)dx ≤ 0.

It follows that A is strongly monotone.
Step 4. We prove that A is a coercive operator. We have

1

‖u‖〈Au, u〉 =
1

‖u‖

[∫
RN

(|∇u|p +m(x) |u|p) dx−
∫
RN

f(x, u)udx

]
≥ 1

‖u‖

[
‖u‖p −

∫
RN

(a(x) |u|+ b(x) |u|q |u|)dx
]

≥ 1

‖u‖

(
‖u‖p − C1 ‖a‖(p∗)′ ‖u‖ − C

q+1
2 ‖u‖ ‖u‖γ

)
,

which yields the coercivity of A for 1 < q < p − 1. In the case when q = p − 1, since
X ↪→ Lp(RN ) with continuous embedding, then by a similar argument to that used in
[1], A is coercive.

Step 5. From the previous steps, the assumptions of Theorem 3 are fulfilled.
Therefore, problem (P) has a weak solution. For the uniqueness of weak solution for
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problem (P), suppose that u and v be a weak solutions of (P) such that u 6= v. By (2)
it follows that

0 = 〈Au−Av, u− v〉 ≥ Cp ‖u− v‖p ≥ 0.

Then u = v and the proof now is completed.

This solution cannot be trivial provided that we suppose f(x, 0) 6= 0, because in
this case A0 6= 0.
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