
Applied Mathematics E-Notes, 13(2013), 155-159 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

On Annulus Containing All The Zeros Of A
Polynomial∗

Nisar Ahmad Rather†, Suhail Gulzar Mattoo‡

Received 21 May 2013

Abstract

In this paper, we obtain an annulus containing all the zeros of the polynomial
involving binomial coeffi cients and generalized Fibonacci numbers. Our result
generalize some of the recently obtained results in this direction.

1 Introduction

Gauss and Cauchy were the earliest contributors in the theory of the location of zeros
of a polynomial, since then this subject has been studied by many people (for example,
see [3, 4]). There is always a need for better and better results in this subject because
of its application in many areas, including signal processing, communication theory
and control theory.
A classical result due to Cauchy (see [3, p.122]) on the distribution of zeros of a

polynomial may be stated as follows:

THEOREM A. If P (z) = zn+an−1z
n−1+an−2z

n−2+ · · ·+a0 is a polynomial with
complex coeffi cients, then all zeros of P (z) lie in the disk |z| ≤ r where r is the unique
positive root of the real-coeffi cient polynomial

Q(x) = xn − |an−1|xn−1 − |an−2|xn−2 − · · · − |a1|x− |a0|.

Recently Díaz-Barrero [1] improved this estimate by identifying an annulus containing
all the zeros of a polynomial, where the inner and outer radii are expressed in terms
of binomial coeffi cients and Fibonacci numbers. In fact he has proved the following
result.

THEOREM B. Let P (z) =
∑n
j=0 ajz

j be a non-constant complex polynomial. Then
all its zeros lie in the annulus C = {z ∈ C : r1 ≤ |z| ≤ r2} where

r1 =
3

2
min
1≤k≤n

{
2nFk

(
n
k

)
F4n

∣∣∣∣a0ak
∣∣∣∣
} 1

k

and r2 =
2

3
max
1≤k≤n

{
F4n

2nFk
(
n
k

) ∣∣∣∣an−kan

∣∣∣∣
} 1

k

.
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Here Fj are Fibonacci’s numbers, that is, F0 = 0, F1 = 1 and for j ≥ 2, Fj =
Fj−1 + Fj−2.

More recently, Bidkham et. al [2] considered t-Fibonacci numbers, namely Ft,n =
tFt,n−1 + Ft,n−2 for n ≥ 2 with initial condition Ft,0 = 0, Ft,1 = 1 where t is any
positive real number and obtained the following generalization of Theorem B.

THEOREM C. Let P (z) =
∑n
j=0 ajz

j be a non-constant complex polynomial of
degree n and

λk =
(t3 + 2t)k(t2 + 1)nFt,k

(
n
k

)
(t2 + 1)kFt,4n

for any real positive number t. Then all the zeros of P (z) lie in the annulus R = {z ∈
C : s1 ≤ |z| ≤ s2} where

s1 = min
1≤k≤n

{
λk

∣∣∣∣a0ak
∣∣∣∣} 1

k

and s2 = max
1≤k≤n

{
1

λk

∣∣∣∣an−kan

∣∣∣∣} 1
k

.

In this paper, we determine in the complex plane an annulus containing all the zeros
of a polynomial involving binomial coeffi cients and generalized Fibonacci numbers (see
[5]) defined recursively by

F
(a,b,c)
0 = 0, F

(a,b,c)
1 = 1

and

F (a,b,c)n =

{
aF

(a,b,c)
n−1 + cF

(a,b,c)
n−2 , if n is even

bF
(a,b,c)
n−1 + cF

(a,b,c)
n−2 , if n is odd

(n ≥ 2) (1)

where a, b, c are any three positive real numbers. Our result includes Theorem B and
Theorem C as special cases. More precisely, we prove the following result.

2 Main Result

The main result is

THEOREM 1. Let P (z) =
∑n
j=0 ajz

j be a non-constant complex polynomial of
degree n. Then all its zeros lie in the annulus C = {z ∈ C : r1 ≤ |z| ≤ r2} where

r1 =
uv + 2w

uvw + w2
min
1≤k≤n

{
(uvw + w2)nuξ(k)(uv)b

k
2 cF

(u,v,w)
k

(
n
k

)
F
(u,v,w)
4n

∣∣∣∣a0ak
∣∣∣∣
} 1

k

,

r2 =
abc+ c2

ab+ 2c
max
1≤k≤n

{
F
(a,b,c)
4n

(abc+ c2)naξ(k)(ab)b
k
2 cF

(a,b,c)
k

(
n
k

) ∣∣∣∣an−kan

∣∣∣∣
} 1

k

,

a, b, c, u, v, w are any positive real numbers, ξ(k) := k − 2bk2 c and F
(a,b,c)
m is defined as

in (1).
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REMARK 1. By taking a, b, c and u, v, w suitably in Theorem 1, we shall obtain
Theorems B and C. For example, if we take a = b = u = v = t and c = w = 1, in
Theorem 1 we obtain Theorem C.

EXAMPLE 1. We consider the polynomial P (z) = z3+0.1z2+0.3z+0.7, which is
the only example considered by Díaz-Barrero [1] and by using Theorem B, the annulus
containing all the zeros of P (z) comes out to be 0.58 < |z| < 1.23. We improved the
upper bound of this annulus by taking a = 1/2, b = 1 and c = 3/8 in Theorem 1
and obtained the disk, |z| < 1.185, which contains all the zeros of polynomial P (z).
Similarly, we can improve the lower bound by choosing u, v, w suitably.

3 Lemma

To prove Theorem 1, we need the following lemma.

LEMMA 1. If F (a,b,c)k is defined as in (1), then
n∑
k=1

(ab+ c)n−k(ab+ 2c)kaξ(k)(ab)b
k
2 ccn−kFk

(
n

k

)
= F4n (2)

where ξ(k) = k − 2bk2 c.

PROOF. For F (a,b,c)k , we have [5]

F
(a,b,c)
k =

a1−ξ(k)

(ab)b
k
2 c

(
αk − βk

α− β

)

where α =
ab+
√
(ab)2+4abc

2 , β =
ab−
√
(ab)2+4abc

2 and ξ(k) = k − 2bk2 c. We consider that
n∑
k=1

(
n

k

)
(abc)n−k

[
(ab)2 + abc

]n−k[
(ab)3 + 2(ab)2c

]k
aξ(k)(ab)b

k
2 cF

(a,b,c)
k

=

n∑
k=1

(
n

k

)
(−1)n−k(αβ)n−k

(
2∑
j=0

αjβ2−j

)n−k( 3∑
j=0

αjβ3−j

)k
a

(
αk − βk

α− β

)

=
aαn

α− β

{
n∑
k=1

(
n

k

)
(−1)n−k

(
2∑
j=0

αjβ3−j

)n−k( 3∑
j=0

αjβ3−j

)k}

− aβn

α− β

{
n∑
k=1

(
n

k

)
(−1)n−k

(
2∑
j=0

α1+jβ2−j

)n−k( 3∑
j=0

αjβ3−j

)k}

=
aαn

α− β

 3∑
j=0

αjβ3−j −
2∑
j=0

αjβ3−j

n

− aβn

α− β

 3∑
j=0

αjβ3−j −
2∑
j=0

α1+jβ2−j

n

=a

(
αn(α3)n − βn(β3)n

α− β

)
= (ab)2nF

(a,b,c)
4n .
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Equivalently, we have
n∑
k=1

(
n

k

)
(ab+ c)n−k(ab+ 2c)kaξ(k)(ab)b

k
2 ccn−kF

(a,b,c)
k = F

(a,b,c)
4n .

4 Proof of Theorem

We first show that all the zeros of P (z) lie in

|z| ≤ r2 = max
1≤k≤n

{
(ab+ c)kckF

(a,b,c)
4n

(ab+ c)n(ab+ 2c)kaξ(k)(ab)b
k
2 ccnF

(a,b,c)
k

(
n
k

) ∣∣∣∣an−kan

∣∣∣∣
} 1

k

(3)

where a, b, c are any three positive real numbers. From (3), it follows that∣∣∣∣an−kan

∣∣∣∣ ≤ rk2 (ab+ c)n(ab+ 2c)kaξ(k)(ab)b k2 ccnF (a,b,c)k

(
n
k

)
(ab+ c)kckF

(a,b,c)
4n

, k = 1, 2, 3, ..., n

or
n∑
k=1

∣∣∣∣an−kan

∣∣∣∣ 1rk2 ≤
n∑
k=1

(ab+ c)n(ab+ 2c)kaξ(k)(ab)b
k
2 ccnF

(a,b,c)
k

(
n
k

)
(ab+ c)kckF

(a,b,c)
4n

. (4)

Now, for |z| > r2, we have

|P (z)| = |anzn + an−1zn−1 + · · ·+ a1z + a0|

≥ |an||z|n
{
1−

n∑
k=1

∣∣∣∣an−kan

∣∣∣∣ 1

|z|k

}

> |an||z|n
{
1−

n∑
k=1

∣∣∣∣an−kan

∣∣∣∣ 1rk2
}
.

Using (2) and (4), we have for |z| > r2, |P (z)| > 0. Consequently all the zeros of P (z)
lie in |z| ≤ r2 and this proves the second part of theorem.
To prove the first part of the theorem, we will use second part. If a0 = 0, then

r1 = 0 and there is nothing to prove. Let a0 6= 0, consider the polynomial

Q(z) = znP (1/z) = a0 + a1z
n−1 + · · ·+ an−1z + an.

By second part of the theorem for any three positive real numbers u, v, w, if Q(z) = 0,
then

|z| ≤ max
1≤k≤n

{
(uv + w)kwkF

(u,v,w)
4n

(uv + w)n(uv + 2w)kuξ(k)(uv)b
k
2 cwnF

(au,v,w)
k

(
n
k

) ∣∣∣∣aka0
∣∣∣∣
}1/k

=
1

min
1≤k≤n

{
(uv + w)kwkF

(u,v,w)
4n

(uv + w)n(uv + 2w)kaξ(k)(ab)b
k
2 cwnF

(u,v,w)
k

(
n
k

) ∣∣∣ a0ak ∣∣∣
}1/k

=
1

r1
.
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Now replacing z by 1/z and observing that all the zeros of P (z) lie in

|z| ≥ r1 = min
1≤k≤n

{
(uv + w)kwkF

(u,v,w)
4n

(uv + w)n(uv + 2w)kuξ(k)(uv)b
k
2 cwnF

(u,v,w)
k

(
n
k

) ∣∣∣∣a0ak
∣∣∣∣
} 1

k

.

This completes the proof of theorem 1.
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