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Abstract

In this article we present a modified version of Kaczmarz method for solv-

ing ill-posed systems of linear algebraic equations. This algorithm is based on

transforming regularized normal equations to the equivalent augmented regular-

ized normal system of equations. The proposed algorithm can effectively solve

ill-posed problems of large dimensionality.

1 Statement of The Problem

Let us consider a standard A. N. Tikhonov’s regularization problem

min
u∈Rn

{

‖Au − f‖2 + α‖u‖2
}

, (1)

where A ∈ R
m×n, f ∈ R

m, α > 0 is a regularization parameter, ‖·‖ = ‖·‖2 is Euclidean
norm.

If matrix A has large dimensionality and is probably highly sparse, iterative methods
often represent practically the only method for solving problem (1). However, most
recent iterative algorithms for solving problem (1) are based on solving Euler equations
(regularized normal equations)

(ATA + αIn)u = ATf, (2)

where T denotes transposition, In is the identity matrix of order n.
Taking into account that condition number of problem (2) is approximately equal to

the square of the condition number of the initial problem (1), it is practically impossible
to solve problem (1) using the popular iterative methods.

The classical iterative methods easily lead to slow convergence when A has a large
condition number in (1). Many studies were devoted to this problem. For example, an
accelerated predictor–corrector iterated Tikhonov regularization was proposed [1] by
combining the classical iterated Tikhonov regularization with modified Euler method.
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This paper is based on the famous Kaczmarz‘s method [2] and its block-based version
suggested in [3]. We transform the system (1.2) to augmented regularized system of
linear equations [4] which is always consistent and determined (for the α > 0). We apply
the Kaczmarz algorithm to this augmented system and propose original modification.

It is suggested here that the regularization parameter α is known. One of the easiest
algorythms for selecting a regularization parameter was proposed by V. A. Morozov
and S. F. Gilyazov [5]. According to this approach the regularization parameter α is
selected α = h, where h is a quantity that characterizes the error of specifying the
elements of matrix A. This algorithm for selecting a regularization parameter means
that the noise level in the initial task data is known. However, if estimation of the noise
level is inaccurate, that would lead to many errors in regularizable solution. Here a set
of stable rules for choosing a regularization parameter is offered [6]. They are proved
to be stable from the point of view of perturbance level assessment.

It should be mentioned that there are regularization parameter selection rules which
demand no prior information, for example [7].

In conclusion we present the computing experiment results. They demonstrate the
efficiency of the suggested algorithm for solving the problem of regularization, and in
particular, the efficiency when we apply the randomized Kaczmarz method [8].

2 Method of Augmented Regularized Normal Equa-

tions

As shown in [4], the regularized normal system of equation (2) can be written as
(

ωIm A

AT −ωIn

) (

y

u

)

=

(

f

0

)

⇐⇒ Ãωz = f̃ , (3)

where ω =
√

α, and In ∈ R
n×n and Im ∈ R

m×m are the identity matrices.
Matrix Ãω of the system (3) is nonsingular for all α > 0 [4] and its only solution is

a vector z∗ = (yT
∗ , uT

∗ )T , where u∗ = (AT A + αIn)−1AT f , y∗ = ω−1r∗, r∗ = f − Au∗.
The spectral condition number of the regularized normal systems 2 is

κ2(A
T A + αIn) =

σ2
max + α

σ2
min + α

,

where σmin and σmax are the minimal and maximal singular numbers of matrix A re-
spectively. The spectral condition number of the augmented regularized normal system
(3) is considerably smaller and is equal to

κ2(Ãω) =
√

κ2(AT A + αIn).

3 Projection Algorithm

Let us write the augmented system (3) as a system of two equations:

(ωImA)z = f, (4)

(AT − ωIn)z = 0. (5)
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To solve the problem (4)–(5), we use the block Kaczmarz algorithm [3] (projection
algorithm):

zi,1 = zi,0 + (ωImA)+[(ωImA)zi,0 − f ], (6)

zi,t = zi,t−1 − βi,t−1

(

at−1

−ωet−1

)

, (7)

where

zi+1,0 = zi,n+1, i = 1, 2, . . . , βi,t−1 =
(aT

t−1,−ωeT
t−1)zi,t−1

‖(aT
t−1,−ωeT

t−1)
T ‖2

, t = 2, 3, . . . , n + 1,

i is the number of external iterations, and t is the number of internal iterations (the total
number of internal iterations for algorithm (6)-(7) is equal to n +1), (e1, . . . , en) = In,
A = (a1, . . . , an), (·)+ is a pseudoinverse matrix.

Matrix Ãω is nonsingular for all cases of α > 0 [4], consequently [2], [3],

zi,n+1
i→∞−→ z∗

for any initial value of vector z1,0.
If we denote u = (u(1), . . . , u(n))T , then, taking into account that vector z =

(yT , uT )T , the recurrent equations (7) can be written as two recurrent equations:

yi,t = yi,t−1 − βi,t−1at−1, βi,t−1 =
aT

t−1yi,t−1 − ωu
(t−1)
i,t−1

‖at−1‖2 + ω2
, (8)

u
(t−1)
i,t = u

(t−1)
i,t−1 + ωβi,t−1, t = 2, 3, . . . , n + 1. (9)

Since y = ω−1r, where r = f −Au, recurrent equations (8)–(9) can be transformed
as follows:

ri,t = ri,t−1 − ρi,t−1at−1, ρi,t−1 =
aT

t−1ri,t−1 − αu
(t−1)
i,t−1

‖at−1‖2 + α
, (10)

u
(t−1)
i,t = u

(t−1)
i,t−1 + ρi,t−1, t = 2, 3, . . . , n + 1. (11)

We note that classifying iteration steps ui,t and ri,t as internal and external ones in
equations (10)–(11) is optional and the computation process can be presented as the
calculation of ”microiterations” according to a certain single parameter k = 1, 2, . . ..
Thus, in this case, it is necessary for convergence that all the columns of matrix A

participate in the sequence of vectors a1, a2, . . . .
Moreover, it will be shown that it is not necessary to use the first recurrent equa-

tion (6) in the iteration process if some additional prerequisite of matching the initial
conditions u0 = u1,0 and r0 = r1,0 is fulfilled. Equation (4) is used only for matching
the initial conditions u0 and r0.

Let k = 1, 2, . . . and j(k) = (k−1)mod(n)+1. Consequently, {j(k)}∞k=1 is a periodic
sequence of the kind 1, 2, . . . , n, 1, 2, . . . , n, . . . . Then recurrent equations (10)–(11) can
be written as follows

rk = rk−1 − ρk−1aj(k), (12)

uk = uk−1 + ρk−1ej(k), (13)
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where

ρk−1 =
aT

j(k)rk−1 − αeT
j(k)uk−1

‖aj(k)‖2 + α
, k = 1, 2, . . . .

Index k in equations (12)–(13) and indices i, t and n in equations (10)–(11) are
related by k = (i− 1)n + t− 1, and t− 1 = j(k). It is obvious, then, that r0 = r1,0 and
u0 = u1,0.

Let us introduce vector θk = (rT
k , uT

k )T . Then recurrent equations (12)–(13) can be
written as one recurrent equation

θk = θk−1 + ρk−1

(

aj(k))

−ej(k))

)

, (14)

where θ0 is the vector of initial values and ρk−1 =
(aT

j(k),−αeT
j(k))θk−1

‖aj(k)‖2+α
, k = 1, 2, . . . .

THEOREM 1. Let vector θ0 = (rT
0 , uT

0 )T satisfy the condition of matching

r0 = f − Au0. (15)

in recurrent equation (14). Then, for an arbitrary initial vector u0, θk −→ θ∗ as
k −→ ∞, where θ∗ = (rT

∗ , uT
∗ )T .

PROOF. Let us construct the proof by mathematical induction. From the condition
of matching (15) of initial values it follows that the condition of matching is fulfilled

rk = f − Auk (16)

for any k ≥ 0 where rk and uk are calculated from recurrent equations (12)–(13).
For k = 1 we obtain from (12), (13)

f − Au1 = f − A(u0 + ρ0e1) = (f − Au0) − ρ0a1 = r0 − ρ0a1 = r1.

Thus, the condition of matching (16) is fulfilled for k = 1. Let us assume that (16) is
fulfilled for some arbitrary k = ν > 1.

Let us show that if (16) for k = ν holds, then also (16) for k = ν + 1 holds. From
recurrent equation (12), (13) we immediately obtain

f−Auj(ν+1) = f−A(uν +ρνej(ν+1)) = (f−Auν)−ρνaj(ν+1) = rν−ρνaj(ν+1) = rj(ν+1).

Since both the basis and the inductive step have been performed, by mathematical
induction, the statement (16) holds for any k = 1, 2, . . . .

If in recurrent equations (6)–(7) y1,0 and u1,0 satisfy the condition

ωy1,0 = f − Au1,0,

z1,1 = z1,0 and consequently vectors ri,t and ui,t from (10), (11) for all k = (i−1)n+t−1
completely coincide with vector θk from equation (14). From the validity of condition
(16) for all k = 1, 2, . . . we immediately find that zi,1 = zi,0 and recurrent equation (6)
is not necessary if condition (15) is fulfilled.

The validity of the theorem conclusively follows from the complete equivalence of
recurrent equations (10), (11) and (14) if condition (15) is fulfilled.



274 Kaczmarz Algorithm for Tikhonov Regularization Problem

4 Numerical Experiment

In this section, we consider Phillips’s ”famous” test problem [10]. Consider the Fred-
holm integral equation of first kind on the square [−6, 6]× [−6, 6] with kernel function

K (s, t) = φ(s− t), u(t) = φ(t),

and right-hand side

f (s) = (6 − |s|)
(

1 +
1

2
cos

(sπ

3

)

)

+
9

2π
sin

( |s| π
3

)

. (17)

The pertubed problem Aũ = f̃ , A ∈ Rn×n, ũ ∈ Rn, f̃ ∈ Rn is constructed for

f̃ =
1

K

K
∑

k=1

f̃k,

where f̃k = (f + εk), εk - is Gaussian noise with ‖f−fk‖
‖f‖ = 0.1,

∥

∥

∥
f − f̃

∥

∥

∥
≈ 0.014 and

K = 50 [9].
The algorithm regularization parameter α is chosen applying the following rule [5]

α =
δσ2

max (A)
∥

∥

∥
f̃
∥

∥

∥

2
+ δ

,
∥

∥

∥
f − f̃

∥

∥

∥
≤ δ, (18)

where σmax (A) - is maximum singular value of matrix A. The parameter δ is approx-
imately assessed as

δ2 =
1

K

K
∑

k=1

∥

∥

∥
f̃ − f̃k

∥

∥

∥

2

. (19)

This way of choosing regularization parameter was also successfully used by authors in
this article [9].

For formulating the problem two algorithms were used: classical Kaczmarz algo-
rithm [10] and regularized Kaczmarz algorithm. Randomized modification with using
the result from [8] was also represented for regularized algorithm. For each algorithm
no more than 6000 iterations were made.

All source codes for MATLAB were published by authors in [11].
There are solutions of problems in Figure 1 received by using under examination

algorithm and the solution of exact problem. In particular absolute and relative errors
while solving Kaczmarz algorithm reach 1.49 and 0.49 correspondingly. While solving
this problem by proposed algorithm, absolute and relative errors reach 0.16 and 0.056
correspondingly.

Randomization algorithm slightly influences the accuracy of regularized solution
but the rate of convergence is much better. There are diagrams in Figure 2 which show
the degree of convergence of each under examination algorithm. Classical Kaczmarz
algorithm was not convergent to the solution even for 6000 iterations, regularized Kacz-
marz algorithm was convergent to the solution for 1485 iteration while randomization
regularized algorithm made it possible to get the solution only for 47 iteration.



A. A. Ivanov and A. I. Zhdanov 275

0 100 200 300 400 500
−0.2

−0.1

0

0.1

0.2

0.3

0.4

 

 

KM KCRM KRCRM Exact Solution

Figure 1: The solutions of testing perturbed problem received by using classical Kacz-
marz method (KM), regularized method (proposed in this article, KCRM - Kaczmarz
Column Regularized Method) and randomized regularized version (KRCRM); and also
the solution of the exact problem (green line).
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Figure 2: The dependence of ek = ‖uinf − uk‖ on iteration number for classical Kacz-
marz algorithm, regularized modification (proposed in this article) and randomized
regularized version.
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5 Conclusion

The obtained results make it possible to suppose that the usage of regularized al-
gorithms, especially in randomization modification, allows for less iteration get more
accurate solution of perturbed problem. It means that this method is highly effective.
It is also noticed that only two matrix operations are used: dot product and saxpy op-
eration in one iteration. This method allows to solve the incorrect and ill-conditioned
problems of large dimensionality efficiently.
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