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Abstract

This paper shows the existence of at least three solutions for Navier problem
involving the p(x)-biharmonic operator. Our technical approach is based on a
theorem obtained by B. Ricceri.

1 Introduction

Analysis of solutions of specific boundary value problems is of considerable importance
in the theory of partial differential equations, especially for equations of fourth order.
Its interest is widely justified with many physical examples and arises from a variety
of nonlinear phenomena. It is used in non-Newtonian fluids, in some reaction-diffusion
problems, as well as in flow through porous media. It also appears in nonlinear elasticity
petroleum extraction and in the theory of quasi-regular and quasi-conformal mappings.
For more detailed references on physical and mathematical background, we refer to
[1, 2, 3, 8].
The present work is concerned with the following p(x)-biharmonic problem with

Navier boundary condition,

(P)

{
∆2
p(x)u = λf(x, u) + µg(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

where Ω is a bounded open domain in RN with smooth boundary ∂Ω, ∆2
p(x)u =

∆(|∆|p(x)−2
∆u) is the p(x)-biharmonic with p ∈ C(Ω), p(x) > 1 for every x ∈ Ω

and λ, µ ∈ R+. We define F (x, t) =
∫ t

0
f(x, s)ds, G(x, t) =

∫ t
0
g(x, s)ds and we denote

by p− := infx∈Ω p(x) and p+ := supx∈Ω p(x).
Throughout this paper, we suppose the following assumptions.
There exist two positive constants C, δ and α ∈ C(Ω) with

α− := inf
x∈Ω

α(x), α+ := sup
x∈Ω

α(x) and 1 < α− ≤ α+ < p−,

such that
(F1) F (x, t) ≥ 0 for a.e. x ∈ Ω and x ∈ [0, δ].
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52 Three Solutions for a Quasi-Linear Elliptic Problem

(F2) There exists q1(x) ∈ C(Ω) with p+ < q−1 ≤ q1(x) < p∗2(x) such that

lim sup
t→0

F (x, t)

|t|q1(x)
< +∞,

uniformly for a.e. x ∈ Ω with

p∗2(x) =

{
Np(x)
N−2p(x) if p(x) < N

2 ,

+∞ if p(x) ≥ N
2 .

(F3) |F (x, t)| ≤ C(1 + |t|α(x)
) for x ∈ Ω and for all t ∈ R.

(F4) F (x, 0) = 0 for a.e. x ∈ Ω.

(G) sup(x,t)∈Ω×R
G(x,t)

1+tq2(x)
< +∞, where q2(x) ∈ C(Ω) and q2(x) < p∗2(x) for x ∈ Ω.

The goal of this paper is to prove the following result.

THEOREM 1. Assume that (F1) to (F4) and (G) are satisfied. Then there exist
an open interval Λ ⊆ [0,+∞[ and a positive real number e such that for every λ ∈ Λ,
there exists σ > 0 such that for each µ ∈ [0, σ], problem (P) has at least three weak
solutions whose norms in W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω) are less than e.

Many authors consider the existence of nontrivial solutions for some fourth order
problems such as [2, 3]. This is a generalization of the classical p-biharmonic operator
∆(|∆u|p−2) obtained in the case when p is a positive constant. Here we point out
that the p(x)-biharmonic operator possesses more complicated nonlinearities than p-
biharmonic, for example, it is inhomogeneous and usually it does not have the so-called
first eigenvalue, since the infimum of its principle eigenvalue is zero. This study is
inspired by the results of [6] and [7], we are to prove the existence of three solutions of
problem (P), and the technical approach is based on the three-critical-points theorem
of Ricceri [11, 12].
This paper is divided into three sections organized as follows: in section 2 we start

with some preliminary basic results on the theory of Lesbegue-Sobolev spaces with
variables exponent (we refer to the book of Musielak [10], Mihăilescu and Rădulescu
[9]), we recall the three-critical-points theorem of Ricceri with some required results.
In section 3, we give the proof of the main result.

2 Preliminaries

In order to deal with the problem (P), we need some theory of variable exponent
Sobolev space. For convenience, we only recall some basic facts which will be used
later. Suppose that Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω. Let
C+(Ω) = {p ∈ C(Ω) and ess infx∈Ω p(x) > 1} for any p(x) ∈ C+(Ω). Set p− =
minx∈Ω p(x), p+ = maxx∈Ω p(x) and

p∗k(x) =
Np(x)

N − kp(x)
if kp(x) < N and p∗k(x) = +∞ if kp(x) ≥ N.
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Define the variable exponent Lebesgue space by

Lp(x)(Ω) =

{
u : Ω→ R measurable :

∫
Ω

|u|p(x)
dx <∞

}
.

Then Lp(x)(Ω) endowed with the norm

‖u‖p(x) = inf

{
λ > 0 :

∫
Ω

∣∣∣u
λ

∣∣∣p(x)

dx ≤ 1

}
,

becomes a separable and reflexive Banach space.

PROPOSITION 1 (cf. [5]). Set ρ(u) =
∫

Ω
|u|p(x)

dx. If u ∈ Lp(x)(Ω), we have

(1) ‖u‖p(x) ≥ 1⇒ ‖u‖p
−

p(x) ≤ ρ(u) ≤ ‖u‖p
+

p(x) .

(2) ‖u‖p(x) ≤ 1⇒ ‖u‖p
+

p(x) ≤ ρ(u) ≤ ‖u‖p
−

p(x) .

Define the variable exponent Sobolev space W k,p(x)(Ω) by

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω) and |α| ≤ k}

where

Dαu =
∂|α|

∂α1x1...∂αNxN

with α = (α1, α2, ..., αN ) a multi-index and |α| = ΣNi=1αi. The space W
k,p(x)(Ω) with

the norm ‖u‖ = Σ|α≤k| ‖Dαu‖p(x) is a separable and reflexive Banach space.

PROPOSITION 2 (cf. [5]). For p, r ∈ C+(Ω) such that r(x) ≤ p∗k(x) for all x ∈ Ω,
there is a continuous and compact embedding

W k,p(x)(Ω) ↪→ Lr(x)(Ω).

We denote W k,p(x)
0 (Ω) by the closure of C∞0 (Ω) in W k,p(x)(Ω).

REMARK 1 (cf. [3]). (W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω), ‖ . ‖) is a separable and reflexive

Banach space. By the above remark and proposition 2.2 there is a continuous and
compact embedding of W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω) into Lr(x)(Ω) where r(x) < p∗2 for all
x ∈ Ω.

PROPOSITION 3 (cf. [5]). Set %(u) =
∫

Ω
|∆u|p(x)

dx. For u, un ∈ W 2,p(x)(Ω), we
have
(1) ‖u‖ ≤ 1⇒ ‖u‖p

+

≤ %(u) ≤ ‖u‖p
−
.

(2) ‖u‖ ≥ 1⇒ ‖u‖p
−
≤ %(u) ≤ ‖u‖p

+

.
(3) ‖ un ‖→ 0⇔ %(un)→ 0.
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(4) ‖ un ‖→ +∞⇒ %(un)→ +∞.

The proof is similar to proof in ([5], Theorem 3.1).

PROPOSITION 4 (cf. [5]). For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have∣∣∣∣∫
Ω

uvdx

∣∣∣∣ ≤ ( 1

p−
+

1

q−

)
‖u‖p(x) ‖v‖q(x)

where
1

p(x)
+

1

q(x)
= 1.

DEFINITION 1. We say that u ∈ X is a weak solution of problem (P) if∫
Ω

|∆u|p(x)−2
∆u∆vdx = λ

∫
Ω

f(x, u)vdx+ µ

∫
Ω

g(x, u)vdx

for all v ∈ X.

We define

I(u) =

∫
Ω

1

p(x)
|∆u|p(x)

dx, J(u) = −
∫

Ω

F (x, u)dx

and

ψ(u) = −
∫

Ω

G(x, u)dx

where

F (x, t) =

∫ t

0

f(x, s)ds,G(x, t) =

∫ t

0

g(x, s)ds.

Set

〈L(u), v〉 =

∫
Ω

|∆u|p(x)−2
∆u∆vdx for u, v ∈ X.

PROPOSITION 5 (cf. [2, 3]).

(i) L : X → X∗ is a continuous, bounded and strictly monotone operator.

(ii) L is a mapping of type (S+), i.e. if un ⇀ u inX and lim supn→∞ 〈L(un)− L(u), un − u〉 ≤
0, then un → u in X.

(iii) L : X → X∗ is a homeomorphism.

PROPOSITION 6 (cf. Theorem 1 in [11]). Let X be a real reflexive Banach space,
K ⊂ R an interval, I : X → R be a sequentially weakly lower semi-continuous C1

function whose derivative admits a continuous inverse on X∗ and J : X → R be a C1
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functional with compact derivative. In addition, I is bounded on each bounded subset
of X. Assume that

lim
‖x‖→∞

I(x) + λJ(x) = +∞ (1)

for λ ∈ K, and that there exists ρ ∈ R such that

sup
λ∈K

inf
x∈X

(I(x) + λ(J(x) + ρ)) < inf
x∈X

sup
λ∈K

(I(x) + λ(J(x) + ρ)).

Then there exist a nonempty set A ⊆ K and a positive number e with the following
property: for every λ ∈ A and every C1 functional ψ : X → R with compact derivative,
there exists σ > 0 such that for each µ ∈ [0, σ], the equation

I ′(u) + λJ ′(u) + µψ′(u) = 0

has at least three solutions in X whose norms are less than e.

PROPOSITION 7 (cf.[12]). Let X be a nonempty set, and I and J are two real
functions on X. Suppose there are γ > 0 and u0, u1 ∈ X such that

I(u0) = J(u0) = 0, I(u1) > γ and sup
u∈I−1(]−∞,γ])

J(u) < γ
J(u1)

I(u1)
.

Then for each ρ satisfying

I(u0) = J(u0) = 0, I(u1) > γ and sup
u∈I−1(]−∞,γ])

J(u) < ρ < γ
J(u1)

I(u1)
,

we have
sup
λ≥0

inf
u∈X

(I(u) + λ(ρ− J(u))) < inf
u∈X

sup
λ≥0

(I(u) + λ(ρ− J(u))).

3 Proof of the Main Result

We now turn to the proof of Theorem 1. First, we check the conditions of proposition
6.
According to proposition 5, it is clear that I is continuously Gâteaux differentiable,

whose Gâteaux derivative admits a continuous inverse on X∗. Notice that I is a convex
and continuous functional, and then it is a weakly lower semi-continuous function.
Moreover, ψ and J are continuously Gâteaux differentiable functions and its Gâteaux
derivatives are compact. By a similar analysis to that in Fan and Zhang (cf. [4]), by
(F3) and (G), we know that J, ψ ∈ C1(X,R) such that

J ′(u)v =

∫
Ω

f(x, u(x))vdx and ψ′(u)v =

∫
Ω

g(x, u(x))vdx

for u, v ∈ X. Since the identity operator from X to Lα(x) is compact, so the operators
J ′ and ψ′∗ are compact. Obviously, I is bounded on each bounded subset of X.
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For ‖u‖ < 1,
1

p+
‖u‖p

+

≤ I(u) ≤ 1

p−
‖u‖p

−
.

Let C0 > 0 such that C0 ≥ 1
p+ ‖u‖

p− − 1
p− ‖u‖

p+
. Then

I(u) ≥ 1

p+
‖u‖p

−
− C0.

Since ‖u‖ ≥ 1, we have I(u) ≥ 1
p+ ‖u‖

p−
, and thus for any u ∈ X we infer that

λJ(u) = −λ
∫

Ω

F (x, u)dx

≥ −λ
∫

Ω

C(1 + |u|α(x)
dx)

≥ −λC(|Ω|+ ‖u‖α
+

α(x) + ‖u‖α
−

α(x))

≥ −C1(1 + ‖u‖α
+

α(x))

≥ −C2(1 + ‖u‖α
+

),

with C1 ≥ 0 and C2 ≥ 0. Consequently, we obtain

I(u) + λJ(u) ≥ 1

p+
‖u‖p

−
− C2(1 + ‖u‖α

+

)− C0.

Therefore, for u ∈ X and λ ≥ 0, since α+ < p−, we get

lim
‖u‖→+∞

(I(u) + λJ(u)) = +∞.

Then the assumption (1) is satisfied. In order to prove the assumption (2), we need to
verify the conditions of proposition 7.
Let u0 = 0. Then I(u0) = −J(u0) = 0. We show that the assumption (3) of

proposition 7 holds. Let x0 ∈ Ω (because Ω is a nonempty bounded open set) and
r2 > r1 > 0. Take ω(x) ∈ C∞0 (Ω) with ω(x) = 0 for x ∈ Ω \ B(x0, r2), ω(x) =
δ

r2−r1 (r2− ‖ xi−x0
i ‖2) when x ∈ B(x0, r2)\B(x0, r1) and ω(x) = δ when x ∈ B(x0, r1)

with ‖ x ‖2= (ΣNi=1(xi)
2)

1
2 .

Here u1(x) = ω(x). Then we can get

−J(u1) = −J(ω) =

∫
Ω

F (x, ω)dx > 0.

By (F2), there exist η ∈ [0, 1] and C1 > 0 such that

F (x, t) ≤ C1 |t|q1(x) for |t| < η and a.e. x ∈ Ω.

Putting

K1 = sup
|t|<η

C[1 + |t|α
+

]

|t|q
−
1

, K2 = sup
|t|>η

C[1 + |t|α
+

]

|t|q
−
1

, K3 = sup
|t|<1

C[1 + |t|α
+

]

|t|q
−
1

,
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K4 = sup
|t|>1

C[1 + |t|α
+

]

|t|q
−
1

and M∗ = max{C1,Ki, i = 1, ..., 4}.

Thus
F (x, t) < M∗ |t|q

−
1 for t ∈ R and a.e. x ∈ Ω.

Now, fix γ such that 0 < γ < 1. If we have 1
p+ ‖u‖

p+ ≤ γ < 1. By the Sobolev
embedding Theorem, for suitable positive constants C2 and C3, we entail that

−J(u) =

∫
Ω

F (x, u)dx < M∗
∫

Ω

|u|q
−
1 ≤ C2 ‖u‖q

−
1 ≤ C3γ

q
−
1
p+ .

It follows from q−1 > p+ that

lim
γ→0+

sup 1

p+
‖u‖p+≤γ {−J(u)}

γ
= 0. (2)

Let ω ∈ X as previously mentioned with the fact −J(ω) > 0. Fix γ0 where γ < γ0 <
1
p+ min{‖ω‖p

+

, ‖ω‖p
−
, 1} ≤ 1. Now, there are two cases to be considered.

If ‖ω‖ < 1 , we have

I(u1) = I(ω) =

∫
Ω

1

p(x)
|∆ω|p(x)

dx ≥ 1

p+

∫
Ω

|∆ω|p(x)
dx

≥ 1

p+
‖ω‖p

+

≥ γ0 > γ.

By (2), it yields

sup
1

p+
‖‖u‖p+≤γ

−J(u) ≤ γ

2

−J(u1

1
p− ‖ω‖

p−
≤ γ

2

−J(u1)

I(u1)
< γ
−J(u1)

I(u1)
.

Else if ‖ω‖ ≥ 1 we obtain

I(u1) = I(ω) =

∫
Ω

1

p(x)
|∆ω|p(x)

dx ≥ 1

p+

∫
Ω

|∆ω|p(x)
dx

≥ 1

p+
‖ω‖p

−
≥ γ0 > γ.

From (2), since γ > 0, we get

sup
1

p+
‖u‖p+≤γ

−J(u) ≤ γ

2

−J(u1)
1
p− ‖ω‖

p+
≤ γ

2

−J(u1)

I(u1)
< γ
−J(u1)

I(u1)
.

Thereby,

sup
1

p+
‖u‖p+≤γ

−J(u) < γ
−J(u1)

I(u1)
. (3)
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For any u ∈ I−1(]−∞, γ]), we have∫
Ω

1

p(x)
|∆u|p(x)

dx ≤ γ.

Then ∫
Ω

1

p+
|∆u|p(x)

dx ≤ γ.

Hence, ∫
Ω

|∆u|p(x)
dx ≤ γ 1

1
p+

< γ0

1
1
p+

< 1.

The last inequality implies that ‖u‖ < 1 and

1

p+
‖u‖p

+

<

∫
Ω

1

p(x)
|∆u|p(x)

dx ≤ γ,

so we conclude

I−1(]−∞, γ]) ⊂ {u ∈ X :
1

p+
‖u‖p

+

< γ}.

We deduce from the relation (3) that

sup
u∈I−1(]−∞,γ])

−J(u) < γ
−J(u1)

I(u1)
.

We can find ρ such that

sup
u∈I−1(]−∞,γ])

−J(u) < ρ < γ
−J(u1)

I(u1)
.

Taking K = [0,+∞[, the assumptions of proposition 7 are satisfied. Then, we may
easily obtain the condition (2) of proposition 6. Consequently, I, J and ψ verify the
conditions of proposition 6. So the proof is complete.
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