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Abstract

Let A and B be real square matrices of dimension d ≥ 2 and r > 0. We consider
the system

X́(t) = AX(t) +BX(t− r), t ≥ 0,

where X is specified on the interval [−r, 0] and give explicit solutions for the
system when the matrix A has a single eigenvalue, generalizing results of [7]. By
decoupling, we obtain explicit representations for solutions of a certain class of
these systems in which A has several distinct eigenvalues.

1 Introduction

Delay equations play an important role in mathematical modeling since the effects of
delays are inherent in the dynamics of the evolution of many systems. A number of
applications of delay equations are discussed in Hauptmann et. al [3], Morelli et. al [6],
Decoa et. al [1] etc. and also in the monographs of Hale [2] and Smith [9].
A close look at the literature shows that explicit representations of solutions of delay

equations are known only in a few simple cases e.g. Küchler and Mensch [4], where a
formula appears for the one dimensional linear case with a single delay. Similar closed
form representations for the one dimensional equation with a single delay are also found
in a more recent paper by Khusainov et. al [5].
In [7] we gave a formula for the general solution of the two dimensional linear system

X́(t) = AX(t) + BX(t − r), t ≥ 0, where the matrix A has a single eigenvalue. The
results were used in [8] to give easily verifiable suffi cient conditions for the stability of
the system.
Our aim in the present paper is to generalize the results of [7] to systems in Rd for

arbitrary d ≥ 2 and also to extend them to a certain class of these systems in which
A has several eigenvalues. The fundamental matrix solution which we present here
generalizes that known in the case of systems of ordinary differential equations.
The rest of the paper is organized as follows: In Section 2 we introduce Definitions.

We also prove a number of technical Lemmas which we use in Section 3. Our main
results appear in Section 3 and Section 4.
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2 Prerequisites

Let d ≥ 2, r > 0, A ∈ M(d, d,R), B ∈ M(d, d,R) where M(d, d,R) denotes the set of
d× d real matrices, g : [−r, 0]→ Rd, f : [0,∞)→ Rd and consider the system

X́(t) = AX(t) +BX(t− r) + f(t), t ≥ 0 (1)

X(t) = g(t), t ∈ [−r, 0]. (2)

DEFINITION 1.

(i) We say that (1)(2) is homogeneous if f ≡ 0 otherwise we say that it is inhomo-
geneous.

(ii) We say that the system is of Type I if A has a single eigenvalue otherwise we say
that it is of Type II.

REMARK 1. If the system is homogeneous then (1)(2) becomes

X́(t) = AX(t) +BX(t− r), t ≥ 0 (3)

X(t) = g(t), t ∈ [−r, 0]. (4)

By a solution of (1)(2) we understand a function X which satisfies the following:

DEFINITION 2. A function X : [−r,∞) → Rd is called a solution of (1) with
initial condition (2), if it is continuous, satisfies (1) Lebesgue almost everywhere on
[0,∞) and (2).

Let 1{0} denote the indicator function of the singleton set {0} defined for t ∈ R by

1{0}(t) =

{
1 for t = 0,
0 for t 6= 0.

If f and g are integrable then the solution of (1) (2) is given by

X(t) := G(t)g(0) +

∫ 0

−r
G(t− s− r)Bg(s)ds+

∫ t

0

G(t− s)f(s)ds (5)

(see Smith [9] for the derivation of (5)), where the M(d, d,R)-valued function G is
the fundamental matrix solution for the homogeneous system (3) in the sense of the
following Definition:

DEFINITION 3. We call the function G : [−r,∞) → M(d, d,R) the fundamental
matrix solution for the homogeneous system (3) if for any η ∈ Rd

X(t) := G(t)η for t ∈ [−r,∞)
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is a solution of (3) with the initial condition X(t) = η1{0}(t) for t ∈ [−r, 0].

Explicit solutions of the system (1)(2) can therefore be obtained by determining G
explicitly. We shall first consider Type I systems which are homogeneous.
Consider the homogeneous system (3)(4) and assume that it is of Type I. Let ξ ∈ C

be the eigenvalue of A, then A admits a decomposition A = QJQ−1, where J is the
Jordan canonical form of A i.e., if E denotes the d× d identity matrix, then

J = ξE +M, (6)

where M := (mij), τ i ∈ {0, 1} and

mij :=

{
0, i ≥ j or j ≥ i+ 2,
τ i, otherwise.

Let Z := Q−1X and H := Q−1BQ, then in case of existence, solutions of (3)(4) can
be obtained by solving the system

Ź(t) = JZ(t) +HZ(t− r), t ≥ 0 (7)

Z(t) = Q−1g(t), t ∈ [−r, 0]. (8)

For the matrix M in (6), we define M0 = E. If z ∈ Rd and m ∈ {0, 1, 2, . . .}, then we
define zm := Mmz. Note that zm = 0 for m ≥ d.
If x, y ∈M(d, d,R), then we define Tx(y) := xy and if A ⊆M(d, d,R), then we write

TxA for {Tx(y) : y ∈ A}. We define I0 := Ij0 := {E} , j = 0, . . . , d− 1. For k ≥ 1 and
j ∈ {0, 1, . . . , d − 1}, we set Ijk := T(MjH)Ik−1 and Ik := ∪{Ijk : j = 0, . . . , d − 1}. We
shall define p(E) := 0, p(H) := p(M) := 1 and if n ≥ 1, xi ∈ {M, H, E}, i = 1, . . . , n,

then we define p(x1 · · ·xn) :=
n∑
i=1

p(xi). If x := x1 · · ·xm = 0 for some m where

xi ∈ {M,H,E}, i = 1, . . . ,m then we call x a zero. If a set contains more than one
zero, then, where it is convenient, we shall jointly denote all the zeroes by a single
symbol 0. As an example {H,MdH,Md} shall be represented as {H, 0} where it is
convenient. Note however, that MdH and Md are distinct with p(MdH) = d+ 1 and

p(Md) = d. We shall write xm for the product
m×︷ ︸︸ ︷

x · · ·x.
The following observations will be useful:

LEMMA 1.
min{p(x) : x ∈ Ik} = min{p(x) : x ∈ I0

k} (9)

and
max{p(x) : x ∈ Ik} = max{p(x) : x ∈ Id−1

k }. (10)

PROOF.

Ik = ∪{T(MjH)Ik−1 : j = 0, . . . , d− 1} = ∪{(M jHx) : x ∈ Ik−1, j = 0, . . . , d− 1}.
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Therefore,

min{p(x) : x ∈ Ik} = min{p(M0Hx) : x ∈ Ik−1} = min{p(x) : x ∈ I0
k}.

This proves (9). The argument proving (10) is similar.

LEMMA 2. Let j ∈ {0, . . . , d− 1}, then for k ≥ 1

min{p(x) : x ∈ Ijk} = j + k (11)

and
max{p(x) : x ∈ Ijk} = j + 1 + (k − 1)d. (12)

PROOF. Let j ∈ {0, . . . , d−1}. If k = 1, then Ij1 = {(M jH)}. Thereforemax{p(x) :

x ∈ Ij1} = j + 1 = j + 1 + (k− 1)d. Assume that the assertion is true for k = m. Then
for k = m+ 1,

max{p(x) : x ∈ Ijm+1} = max{p(x) : x ∈ T(MjH)Im}
= j + 1 + max{p(x) : x ∈ Im}
= j + 1 + max{p(x) : x ∈ Id−1

m },

where the last equality follows from (10). By the assumption of the induction,

max{p(x) : x ∈ Id−1
m } = (d− 1) + 1 + (m− 1)d = md = ((m+ 1)− 1)d.

This proves (12). (11) is proven similarly.

LEMMA 3. For k ≥ 0 and l ∈ {k, . . . , kd}, the set {x ∈ Ik : p(x) = l} is non-empty.

PROOF. We shall also prove this statement by induction. If k = 0 then Ik = {E},
dk = 0 and hence l ∈ {0}. Also, {x ∈ I0 : p(x) = 0} = {E} 6= ∅. Assume that the
statement is true for some k ≥ 0 then {x ∈ Ik : p(x) = l} 6= ∅ where l = k, . . . , dk. We
now show that {x ∈ Ik+1 : p(x) = l} 6= ∅ where l = k + 1, . . . , d(k + 1). Since

Ik+1 = ∪{(M jH)x : x ∈ Ik, j = 0, . . . , d− 1},

{p(x) : x ∈ Ik+1} consists of the distinct elements of the following collection:

{j + 1 + p(x) : x ∈ Ik and j ∈ {0, . . . , d− 1}}
= {j + 1 +m : m ∈ {k, . . . , dk} and j ∈ {0, . . . , d− 1}}.

However, the distinct elements of this collection are the numbers in the set {(k +
1), . . . , d(k + 1)}.

For typographical convenience, let us use the following notation:

Λk,l := {x ∈ ∪d−1
j=1I

j
k : p(x) = l}
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and
∆k,l := {x ∈ I0

k : p(x) = l}.
We note that Λk,l ∪∆k,l = {x ∈ Ik : p(x) = l}. We have the following Remark:

REMARK 2.

(i) By Lemma 2, for j = 0, . . . , d− 1 and k ≥ 1,

{x ∈ Ijk : p(x) < j + k} = ∅ and {x ∈ Ijk : p(x) > j + 1 + (k − 1)d} = ∅.

So

(a) Λk,k = ∅ and
(b)

{
x ∈ I0

k : p(x) > (k − 1)d+ 1
}

= ∅.

Also {x ∈ Ik : p(x) < k} = ∅ and {x ∈ Ik : p(x) > kd} = ∅ and hence

(ii) In view of Lemma 3, Ik is the disjoint union of the non-empty sets {x ∈ Ik :
p(x) = l} where l = k, . . . , kd.

(iii) For l ∈ {k, . . . , kd},

{x ∈ Ik : p(x) = l} = {x ∈ ∪d−2
j=0I

j
k : p(x) = l} ∪ {x ∈ Id−1

k : p(x) = l}.

Since TMI
j
k = Ij+1

k , min{p(x) : x ∈ Id−1
k } = k + d− 1 and TMI

d−1
k = {0} for all

j = 0, . . . , d− 2, we observe that

TM{x ∈ Ik : p(x) = l} =

 Λk,(l+1) ∪ F, l ∈ {k, . . . , kd− 1},
{0}, l = kd,
∅, l ≤ k − 1 or l ≥ kd+ 1,

where

F :=

{
∅, l < k + d− 1
{0}, l ∈ {k + d− 1, . . . , kd− 1}.

(iv) From (ii) and the definition of I0
k+1,

TH{x ∈ Ik : p(x) = l} =

{
∆(k+1),(l+1), k ≤ l ≤ kd,
∅, otherwise.

3 Systems of Type I

In this Section, we give an explicit solution of the system (3)(4) when it is of Type I.

LEMMA 4. Let the matrices J and M be as in (6), d ≥ 2 and H ∈ M(d, d,R) be
arbitrary, then the system

Ź(t) = JZ(t) +HZ(t− r), t ≥ 0 (13)

Z(t) = z1{0}(t), t ∈ [−r, 0], z ∈ Rd (14)



F. C. Shu 125

admits a unique solution given by

Z(t) :=


[ tr ]∑
k=0

eξ(t−kr)
dk∑
l=k

∑
{x∈Ik:p(x)=l}

x
d−1∑
m=0

(t−kr)l+m
(l+m)! zm, t ≥ 0,

z1{0}(t), t ∈ [−r, 0],

where zm = Mmz.

PROOF. The uniqueness of the solution follows from the step method for solving the
equation. Also, it is easy to see from its definition, that Z is continuous. To complete
the proof, we will show that it satisfies (13) on the intervals (nr, (n+1)r), n = 0, 1, 2, . . ..
Let n = 0, then for t ∈ (0, r), [ tr ] = 0, hence

Z(t) = eξt
d−1∑
m=0

tm

m!
zm.

Therefore,

Ź(t) = ξeξt
d−1∑
m=0

tm

m!
zm + eξt

d−1∑
m=1

tm−1

(m− 1)!
zm (15)

= ξEZ(t) + eξt
d−1∑
m=1

tm−1

(m− 1)!
zm. (16)

Since
JZ(t) +HZ(t− r) = MZ(t) + ξEZ(t) +HZ(t− r) (17)

and Z(t − r) = 0 for t ∈ [0, r), we have to show that MZ(t) = eξt
d−1∑
m=1

tm−1

(m−1)!zm. But

then,

MZ(t) = eξt
d−2∑
m=0

tm

m!
Zm+1 = eξt

d−1∑
m=1

tm−1

(m− 1)!
zm.

The assertion is thus true for n = 0. Let now n ≥ 2 and assume that the formula holds
on ((n − 1)r, nr). We will show that it holds on (nr, (n + 1)r). On (nr, (n + 1)r), we
have

Z(t) = eξt
d−1∑
j=0

tj

j!
zj +

n∑
k=1

eξ(t−kr)
dk∑
l=k

∑
{x∈Ik:p(x)=l}

x

d−1∑
m=0

(t− kr)l+m
(l +m)!

zm.

Therefore,

Ź(t) = ξEZ(t)

+eξt
d−1∑
j=1

tj−1

(j − 1)!
zj (18)

+

n∑
k=1

eξ(t−kr)
dk∑
l=k

∑
{x∈Ik:p(x)=l}

x

d−1∑
m=0

(t− kr)(l−1)+m

((l − 1) +m)!
zm. (19)
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By (17), it suffi ces to show that

MZ(t) +HZ(t− r) = (18) + (19).

For t ∈ (nr, (n+ 1)r), t− r ∈ ((n− 1)r, nr), hence

MZ(t) +HZ(t− r)

= eξt
d−1∑
j=0

tj

j!
Mzj (20)

+

n∑
k=1

eξ(t−kr)
dk∑
l=k

∑
{x∈Ik:p(x)=l}

Mx

d−1∑
m=0

(t− kr)l+m
(l +m)!

zm (21)

+eξ(t−r)
d−1∑
j=0

(t− r)j
j!

Hzj (22)

+

n−1∑
k=1

eξ(t−(k+1)r)
dk∑
l=k

∑
{x∈Ik:p(x)=l}

Hx

d−1∑
m=0

(t− (k + 1)r)l+m

(l +m)!
zm. (23)

Now (20) = eξt
d−2∑
j=0

tj

j! zj+1 = eξt
d−1∑
j=1

tj−1

(j−1)!zj , which is (18). We will now show that

(21) + (22) + (23) = (19). We shall use the convention that if g is a map taking values
in a set in which addition is defined and contains a zero, then

∑
{x∈∅}

g(x) = 0.

(21) =

n∑
k=1

eξ(t−kr)
dk−1∑
l=k

∑
{x∈Λk,(l+1)}

x

d−1∑
m=0

(t− kr)l+m
(l +m)!

zm (24)

=

n∑
k=1

eξ(t−kr)
dk∑

l=k+1

∑
{x∈Λk,l}

x

d−1∑
m=0

(t− kr)(l−1)+m

((l − 1) +m)!
zm

=

n∑
k=1

eξ(t−kr)
dk∑
l=k

∑
{x∈Λk,l}

x

d−1∑
m=0

(t− kr)(l−1)+m

((l − 1) +m)!
zm, (25)

where (24) follows from Remark 2 (iii), while (25) follows from Remark 2 (i)(a). Since
I0
1 = {H} = {x ∈ I0

1 : p(x) = 1}, it follows that

(22) = eξ(t−r)
d∑
l=1

∑
{x∈41,l}

x

d−1∑
m=0

(t− r)(l−1)+m

((l − 1) +m)!
zm. (26)
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By Remark 2 (iv),

(23) =

n−1∑
k=1

eξ(t−(k+1)r)
dk∑
l=k

∑
{x∈∆(k+1),(l+1)}

x

d−1∑
m=0

(t− (k + 1)r)l+m

(l +m)!
zm

=

n∑
k=2

eξ(t−kr)
dk−d∑
l=k−1

∑
{x∈∆k,(l+1)}

x

d−1∑
m=0

(t− kr)l+m
(l +m)!

zm

=

n∑
k=2

eξ(t−kr)
(k−1)d+1∑

l=k

∑
{x∈∆k,l}

x

d−1∑
m=0

(t− kr)(l−1)+m

((l − 1) +m)!
zm

=

n∑
k=2

eξ(t−kr)
dk∑
l=k

∑
{x∈∆k,l}

x

d−1∑
m=0

(t− kr)(l−1)+m

((l − 1) +m)!
zm, (27)

where (27) follows from Remark 2 (i)(b). Therefore,

(21) + (22) + (23)

= (25) + (26) + (27)

=

n∑
k=1

eξ(t−kr)
dk∑
l=k

∑
{x∈Λk,l}

x

d−1∑
m=0

(t− kr)(l−1)+m

((l − 1) +m)!
zm

+

n∑
k=1

eξ(t−kr)
dk∑
l=k

∑
{x∈∆k,l}

x

d−1∑
m=0

(t− kr)(l−1)+m

((l − 1) +m)!
zm

=

n∑
k=1

eξ(t−kr)
dk∑
l=k

∑
{x∈Ik:p(x)=l}

x

d−1∑
m=0

(t− kr)(l−1)+m

((l − 1) +m)!
zm

= (19).

In the notation of Section 2 and Lemma 4 we have the following

THEOREM 1. For t ≥ 0, define

K(t) :=

[ tr ]∑
k=0

eξ(t−kr)
dk∑
l=k

∑
{x∈Ik:p(x)=l}

QxQ−1
d−1∑
m=0

(t− kr)l+m
(l +m)!

QMmQ−1,

then the fundamental matrix solution for the homogeneous system (3) is given by

G(t) =

{
K(t) for t ≥ 0
E1{0}(t) for t ∈ [−r, 0].

PROOF. Let η ∈ Rd and define X(t) := G(t)η, t ∈ [−r ∞). We have to show
that X(t) satisfies (3) Lebesgue a.e. on [0,∞) with X(t) = η1{0}(t), t ∈ [−r, 0]. For
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t ∈ [−r, 0], X(t) = G(t)η = E1{0}(t)η = η1{0}(t). By Lemma 4,

Z(t) :=


[ tr ]∑
k=0

eξ(t−kr)
dk∑
l=k

∑
{x∈Ik:p(x)=l}

x
d−1∑
m=0

(t−kr)l+m
(l+m)! zm, for t ≥ 0,

z1{0}(t), for t ∈ [−r, 0]

satisfies (7) Lebesgue almost everywhere on [0,∞) with the initial condition Z(t) =
z1{0}(t), t ∈ [−r, 0]. In particular, if z = Q−1η, then X(t) = QZ(t) satisfies (3)
Lebesgue a.e. on [0,∞) with X(t) = η1{0}(t), t ∈ [−r, 0]. Now for t ≥ 0,

QZ(t) =

[ tr ]∑
k=0

eξ(t−kr)
dk∑
l=k

∑
{x∈Ik:p(x)=l}

QxQ−1
d−1∑
m=0

(t− kr)l+m
(l +m)!

QMmQ−1η (28)

= K(t)η = G(t)η.

Therefore X(t) = G(t)η for t ∈ [−r ∞) satisfies (3) Lebesgue a.e. on [0,∞) with
X(t) = η1{0}(t) for t ∈ [−r, 0].

From Theorem 1 we obtain the following Corollary which generalizes formula 2.3
in [4]:

COROLLARY 1. If the matrix A is diagonal then the fundamental matrix solution
for the homogeneous system (3) is given by

G(t) =


[ tr ]∑
k=0

eξ(t−kr) (t−kr)k
k! Bk, for t ≥ 0,

E1{0}(t), for t ∈ [−r, 0].

PROOF. If A is diagonal i.e. τ i = 0 for all i, then Mm = 0 for all m ≥ 1 and hence
(28) implies

X(t) =


[ tr ]∑
k=0

eξ(t−kr)
dk∑
l=k

∑
{x∈Ik:p(x)=l}

QxQ−1 (t−kr)l
l! Eη, for t ≥ 0,

η1{0}(t), for t ∈ [−r, 0].

Since
{x ∈ Ik : p(x) = l} = {0}

for l = k + 1, . . . , dk, it follows that

G(t) =

[ tr ]∑
k=0

eξ(t−kr)QHkQ−1 (t− kr)k
k!

, t ≥ 0.

Now note that B = QHQ−1.

We also have the following generalization of formula 2.4 in [4]
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COROLLARY 2. If the matrix A is diagonalizable then the solution of (1) (2) with
integrable g and f is given for t ≥ 0 by

X(t) := G(t)g(0) +B

∫ 0

−r
G(t− s− r)g(s)ds+

∫ t

0

G(t− s)f(s)ds.

PROOF. The assertion follows from (5) and the fact that if A is diagonalizable then
G and B commute.

We will now give an example illustrating the considerations above: Consider the
Type I system

x́(t) = Ax(t) +Bx(t− r), t ≥ 0,

x(t) = g(t), t ∈ [−r, 0],

where r > 0,

A =

 5 −3 −2
8 −5 −4
−4 3 3

 , B =

 1 0 0
0 0 0
0 1 0

 and g(t) =

 t
0
0

 .
The only eigenvalue of A is ξ = 1, Q−1AQ = J where

J =

 1 0 0
0 1 1
0 0 1

 , Q =

 1 2 0
0 4 0
2 −2 −1

 and Q−1 =

 1 − 1
2 0

0 1
4 0

2 − 3
2 −1

 .

For t ∈ [0, r), K(t) = et
1∑

m=0

tm

m!QM
mQ−1 = et[E + tQMQ−1] since M2 = 0.

Therefore the fundamental matrix solution is given on [−r, r) by

G(t) :=

{
et
[
E + tQMQ−1

]
, for t ∈ [0, r),

E1{0}(t), for t ∈ [−r, 0].

Since

QMQ−1 =

 4 −3 −2
8 −6 −4
−4 3 2

 and g(t) = t

 1
0
0

 ,
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we see that for t ∈ [0, r),

X(t) = G(t)g(0) +

∫ 0

−r
G(t− s− r)Bg(s)ds

=

∫ t−r

−r
K(t− s− r)Bg(s)ds

=

∫ t−r

−r
et−s−r

E + (t− s− r)

 4 −3 −2
8 −6 −4
−4 3 2

 1 0 0
0 0 0
0 1 0

 s

 1
0
0

 ds

=

∫ t−r

−r
set−s−r

 1
0
0

+ (t− s− r)

 4
8
−4

 ds
=

 1
0
0

∫ t−r

−r
set−s−rds+

 4
8
−4

∫ t−r

−r
set−s−r(t− s− r)ds

= [et(1− r)− (t− r + 1)]

 1
0
0

+ [(2 + t− r)− {2 + tr − t− r}et]

 4
8
−4


and for t ∈ [r, 2r),

K(t) =

1∑
k=0

e(t−kr)
3k∑
l=k

∑
{x∈Ik:p(x)=l}

QxQ−1
1∑

m=0

(t− kr)(l+m)

(l +m)!
QMmQ−1

= et[E + tQMQ−1] + et−r
3∑
l=1

∑
{x∈I1:p(x)=l}

QxQ−1
1∑

m=0

(t− r)m+l

(m+ l)!
QMmQ−1

since I0 = {E}. Now I0
1 = {H}, I1

1 = {(MH)}, I2
1 = {M2H} and so I1 = {H, (MH),

(M2H)}, p(E) = 0, p(H) = 1, p(MH) = 2 and p(M2H) = 3. However M2H = 0.
Therefore

K(t) = et[E + tQMQ−1] + et−rQHQ−1
1∑

m=0

(t− r)m+1

(m+ 1)!
QMmQ−1

+et−rQMHQ−1
1∑

m=0

(t− r)m+2

(m+ 2)!
QMmQ−1

= et[E + tQMQ−1] +

1∑
m=0

(t− r)m+1

(m+ 1)!
et−rQHMmQ−1

+

1∑
m=0

(t− r)m+2

(m+ 2)!
et−rQMHMmQ−1

= et[E + tQMQ−1] + (t− r)et−rQHQ−1 +
(t− r)2

2
et−rQ(HM +MH)Q−1
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where the last equality is explained by the fact that QMHMQ−1 = 0. QMQ−1 was
evaluated above, QHQ−1 = B and one can check that

Q(HM +MH)Q−1 =

 8 −5 −2
8 −4 0
4 −4 −4

 .

Therefore,

K(t) = et[E + tQMQ−1] + (t− r)et−rQHQ−1 +
(t− r)2

2
et−rQ(HM +MH)Q−1

and

X(t) =

∫ 0

−r
G(t− s− r)Bg(s)ds =

∫ 0

−r
K(t− s− r)Bg(s)ds

=

∫ 0

−r
s

[
et−s−r{E + (t− s− r)QMQ−1}+ (t− s− 2r)et−s−2rQHQ−1

+
(t− s− 2r)2

2
et−s−2rQ(HM +MH)Q−1

] 1
0
0

 ds

=

∫ 0

−r
set−s−rds

 1
0
0

+

∫ 0

−r
et−s−rs(t− s− r)ds

 4
8
−4


+

∫ 0

−r
s(t− s− 2r)et−s−2rds

 1
0
0

+

∫ 0

−r
s

(t− s− 2r)2

2
et−s−2rds

 8
8
4


=

(
et{t− tr + r − 2} − et−r{t− r − 2}

) 4
8
−4


+

(
et − ret + et−r{−r(t− r) + t− 3} − et−2r{t− 2r − 2}

) 1
0
0


+

{
et−r

[
−r (t− r)2

2
+

(t− r)2

2
− (t− r) + 1

]
−et−2r

[
(t− 2r)2

2
− (t− 2r) + 1

]

−
[
et−r{−r(t− r) + t− 2} − et−2r{t− 2r − 2}

]} 8
8
4

 .

The process can then be continued on the interval [kr, (k + 1)r), k ≥ 2.
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4 Systems of Type II

In this Section, we will use the results of Section 3 to give an explicit representation for
the fundamental matrix solution for the homogeneous system (3) and hence a solution
of (1)(2) for a certain class of Type II systems.
In what follows all vectors will be understood to be column vectors and we will

write x∗ for the transpose of the vector x. Let d ≥ 2 and consider the system (3)(4).
There exists an invertible matrix Q ∈ M(d, d,R) such that A = QJQ−1, where for
some n ≥ 1,

J = Diag(J11, . . . , Jnn),

a block-diagonal matrix such that for each i = 1, . . . , n, Jii is a square matrix having
the same structure as the matrix J in (6). For i = 1, . . . , n, let di be the dimension of
Jii and define

νi :=

{
1, i = 1
d1 + · · ·+ di−1 + 1, i = 2, . . . , n

and µi := d1 + · · ·+ di.

Let H = (hij)ij=1,...,d. The matrix J induces a partition of H into sub-matrices- H =
(Hij)ij=1,...,n where Hij := (hkl) k=νi,...,µi

l=νj ,...,µj

. With this notation we have the following:

LEMMA 5. Assume that Hij = 0 for all i < j and for i = 1, . . . , n let Gii denote
the fundamental matrix solution for the system

Ẃi(t) = JiiWi(t) +HiiWi(t− r), t ≥ 0.

For i = 1, 2, . . . , n successively, t ≥ 0 and each j ∈ {1, . . . , n} define the sub-matrices
Fij(t) by

Fij(t) :=


0 for j > i,
Gii(t) for i = j,
i−1∑
l=j

∫ t
0
Fii(t− s)HilFlj(s− r)ds for i > j,

and let F (t) := (Fij(t))ij=1,...,n. For z ∈ Rd, let

Z(t) :=

{
F (t)z for t ≥ 0,
z1{0}(t) for t ∈ [−r, 0].

Then Z solves (13)(14).

PROOF. For i = 1, . . . , n let Si be the system

Ẃi(t) = JiiWi(t) +HiiWi(t− r) +

i−1∑
j=1

HijWj(t− r), t ≥ 0, (29)

Wi(t) = ηi1{0}(t), t ∈ [−r, 0], (30)

where ηi := (zνi , . . . , zµi)
∗. Each system Si is a system of Type I. Under the assump-

tions above, solving (13)(14) reduces to solving the n Type I systems, Si, i = 1, . . . , n.
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In particular ((W1(t))∗, . . . , (Wn(t))∗)∗ = Z(t) where Z is the solution of (13)(14).
If we solve the systems {Si} successively in the order S1, S2, . . . , Sn then S1 is a ho-
mogeneous system of Type I while the systems S2, . . . , Sn are inhomogeneous Type I
systems.
Let ξ1, . . . , ξn be the distinct eigenvalues of A such that Jii corresponds to ξi.

Let Ei be the identity matrix of dimension di and Jii = ξiEi + Mi, i = 1, . . . , n.
Further let Iji0 = {Ei} for all j = 0, . . . , di − 1, Ijik = T(Mj

iHii)
Ii(k−1) and Iik =

∪{Ijik : j = 0, . . . , di − 1}.
By Lemma 4,

Gii(t) =

{
Ki(t), t ≥ 0,
Ei1{0}(t), t ∈ [−r, 0],

where

Ki(t) :=

[ tr ]∑
k=0

eξi(t−kr)
dik∑
l=k

∑
{x∈Iik:p(x)=l}

x

di−1∑
m=0

(t− kr)l+m
(l +m)!

Mm
i .

By (5) the solution of (29), (30) is given by

Wi(t) = Gii(t)ηi +

i−1∑
j=1

∫ t

0

Gii(t− s)HijWj(s− r)ds (31)

and hence W (t) = ((W1(t))∗, . . . , (Wn(t))∗)∗ solves

Ẃ (t) = JW (t) +HW (t− r), t ≥ 0,

W (t) = z1{0}(t), t ∈ [−r, 0].

We will now show that for t ≥ −r,

W (t) = Z(t). (32)

It is obvious that W (t) = Z(t) for all t ∈ [−r, 0]. We will now show that W (t) = Z(t)
for t > 0.
To do this, we show by induction that the i-th vector Wi(t) on the left hand side of

(32) equals the i-th vector on the right hand side, i = 1, . . . , n. For i = 1, using (31),
W1(t) = G11(t)η1 = F11(t)η1. Assume that the assertion is true for some i, 1 ≤ i ≤
n− 1. We now show that it is true for i+ 1. Again by (31) and defining ϕ(i, t, s, l) :=
Fii(t− s)Hil,

Wi+1(t) = G(i+1)(i+1)(t)ηi+1 +

i∑
l=1

∫ t

0

G(i+1)(i+1)(t− s)H(i+1)lWl(s− r)ds

= F(i+1)(i+1)(t)ηi+1 +

i∑
l=1

∫ t

0

ϕ(i+ 1, t, s, l)Wl(s− r)ds.
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By the assumption of the induction,

i∑
l=1

∫ t

0

ϕ(i+ 1, t, s, l)Wl(s− r)ds =

i∑
l=1

∫ t

0

ϕ(i+ 1, t, s, l)

l∑
j=1

Flj(s− r)ηjds

=

i∑
l=1

l∑
j=1

∫ t

0

ϕ(i+ 1, t, s, l)Flj(s− r)ηjds

=

i∑
j=1

i∑
l=j

∫ t

0

ϕ(i+ 1, t, s, l)Flj(s− r)dsηj

=

i∑
j=1

F(i+1)j(t)ηj .

Hence Wi+1(t) =
i+1∑
j=1

F(i+1)j(t)ηj .

THEOREM 2. Under the assumptions of Lemma 5 the fundamental matrix solution
for the homogeneous system (3) is given by

G(t) :=

{
QF (t)Q−1 t ≥ 0
E1{0}(t) t ∈ [−r, 0].

PROOF. The proof is similar to the proof of Theorem 1 if we use Lemma 5.

REMARK 3. Similar to Theorem 2 an explicit representation of the fundamental
matrix solution for the homogeneous system (3) can be obtained if Hij = 0 for all i > j.
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