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Abstract

In this note, we present new results on necessary and su¢ cient conditions for
norm-attainability for Hilbert space operators. Moreover, norm-attainability con-
ditions for elementary operators and generalized derivations are also established.
The main results shows that if we let S 2 B(H); � 2 W0(S) and � > 0; then
there exists an operator Z 2 B(H) such that kSk = kZk; with kS � Zk < �.
Furthermore, there exists a vector � 2 H; k�k = 1 such that kZ�k = kZk with
hZ�; �i = �:

1 Introduction

Let H be an in�nite dimensional complex Hilbert space and B(H) the algebra of
all bounded linear operators on H: Let both S and T belong B(H) and consider
T : B(H) ! B(H): T is called an elementary operator if it is represented as T (X) =Pn

i=1 SiXTi; 8 X 2 B(H); where Si; Ti are �xed in B(H) or M(B(H)) where
M(B(H)) is the multiplier algebra of B(H): For S; T 2 B(H) we have the follow-
ing examples of elementary operators: (i) the left multiplication operator LS(X) =
SX; (ii) the right multiplication operator RT (X) = XT; (iii) the inner derivation
�S = SX � XS; (iv) the generalized derivation �S;T = SX � XT; (v) the basic
elementary operator MS; T (X) = SXT; (vi) the Jordan elementary operator and
US; T (X) = SXT + TXS; 8 X 2 B(H): Stamp�i [3] characterized the norm of the
generalized derivation by obtaining that k�S;T k = inf�2CfkS��k+kT ��kg; where C
is the complex plane. Other studies on derivations and elementary operators have also
been carried out with nice results obtained, see [1] and [2] and the references there in.

DEFINITION 1.1. An operator S 2 B(H) is said to be norm-attainable if there
exists a unit vector x0 2 H such that kSx0k = kSk:
DEFINITION 1.2. For an operator S 2 B(H) we de�ne a numerical range by

W (S) = fhSx; xi : x 2 H; kxk = 1g and the maximal numerical range by W0(S) =
f� 2 C : hSxn; xni ! �; where kxnk = 1; kSxnk ! kSkg:
The main result in the next section is Theorem 2.1 which deals with the necessary

and su¢ cient conditions for a Hilbert space operator to be norm-attainable.
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2 Main Results

The following is the main theorem.

THEOREM 2.1. Let S 2 B(H); � 2 W0(S) and � > 0: There exists an operator
Z 2 B(H) such that kSk = kZk; with kS�Zk < �. Furthermore, there exists a vector
� 2 H; k�k = 1 such that kZ�k = kZk with hZ�; �i = �:
PROOF. Without loss of generality, we may assume that kSk = 1 and also that

0 < � < 2: Let xn 2 H (n = 1; 2; :::) be such that kxnk = 1; kSxnk ! 1 and also
limn!1hSxn; xni = �: Let S = GL be the polar decomposition of S: Here G is a partial
isometry and we write L =

R 1
0
�dE� ; the spectral decomposition of L = (S�S)

1
2 : Since

L is a positive operator with norm 1; for any x 2 H we have that kLxnk ! 1 as n
tends to 1 and limn!1hSxn; xni = limn!1hGLxn; xni = limn!1hLxn; G�xni: Now
for H = Ran(L)�KerL; we can choose xn such that xn 2 Ran(L) for large n: Indeed,
let

xn = x
(1)
n � x(2)n ; n = 1; 2; :::

Then we have that
Lxn = Lx

(1)
n � Lx(2)n = Lx(1)n

and that
lim
n!1

kx(1)n k = 1; lim
n!1

kx(2)n k = 0

since
lim
n!1

kLxnk = 1:

Replacing xn with
x(1)n

kx(1)n k
; we obtain

lim
n!1






L 1

kx(1)n k
x(1)n






 = lim
n!1






S 1

kx(1)n k
x(1)n






 = 1;
lim
n!1

*
S

1

kx(1)n k
x(1)n ;

1

kx(1)n k
x(1)n

+
= �:

Now assume that xn 2 RanL: Since G is a partial isometry from RanL onto RanS;
we have that kGxnk = 1 and limn!1hLxn; G�xni = �: Since L is a positive operator,
kLk = 1 and for any x 2 H;

hLx; xi � hx; xi = kxk2:

Replacing x with L
1
2x, we get that hL2x; xi � hLx; xi; where L 1

2 is the positive square
root of L: Therefore we have that kLxk2 = hLx;Lxi � hLx; xi: It is obvious that
limn!1 kLxnk = 1 and that

kLxnk2 � hLxn; xni � kLxnk2 = 1:
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Hence, limn!1hLxn; xni = 1 = kLk: Moreover, Since I�L � 0; we have limn!1h(I�
L)xn; xni = 0: thus limn!1 k(I � L)

1
2xnk = 0: Indeed,

lim
n!1

k(I � L)xnk � lim
n!1

k(I � L) 12 k � k(I � L) 12xnk = 0:

For � > 0; let 
 = [0; 1� �
2 ] and let � = (1�

�
2 ; 1]: We have

L =

Z



�dE� +

Z
�

�dE�

= LE(
)� LE(�):

Next we show that limn!1 kE(
)xnk = 0: If there exists a subsequence xni ; (i =
1; 2; :::; ) such that kE(
)xnik � � > 0; (i = 1; 2; :::; ), then since limi!1 kxni�Lxnik =
0; it follows that

lim
i!1

kxni � Lxnik2 = lim
i!1

(kE(
)xni � LE(
)xnik2 + kE(�)xni � LE(�)xnik2)

= 0:

Hence we have that limi!1 kE(
)xni � LE(
)xnik2 = 0: Now it is clear that

kE(
)xni � LE(
)xnik � kE(
)xnik � kLE(
)k:kE(
)xnik
� (I � kLE(
)k)kE(
)xnik
� �

2
�

> 0:

This is a contradiction. Therefore,

lim
n!1

kE(
)xnk = 0:

Since
lim
n!1

hLxn; xni = 1;

we have that
lim
n!1

hLE(�)xn; E(�)xni = 1

and
lim
n!1

hE(�)xn; G�E(�)xni = �:

It is easy to see that

lim
n!1

kE(�)xnk = 1; lim
n!1

�
L
E(�)xn
kE(�)xnk

;
E(�)xn
kE(�)xnk

�
= 1

and

lim
n!1

�
L
E(�)xn
kE(�)xnk

; G�
E(�)xn
kE(�)xnk

�
= �
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Replacing x with E(�)xn
kE(�)xnk ; we can assume that xn 2 E(�)H for each n and kxnk = 1:

Let

J =

Z



�dE� +

Z
�

�dE�

= J1 � E(�):

Then it is evident that

kJk = kSk = kLk = 1; Jxn = xn;

and kJ �Lk � �
2 : If we can �nd a contraction V such that V �G �

�
2 and kV xnk = 1

and hV xn; xni = �; for a large n then letting Z = V J , we have that kZxnk = kV Jxnk =
1; and that

hZxn; xni = hV Jxn; xni = hV xn; xni = �;

kS � Zk = kGL� V Jk
� kGL�GJk+ kGJ � V Jk
� kGk � kL� Jk+ kG� V k � kJk
� �

2
+
�

2
= �:

To �nish the proof, we now construct the desired contraction V . Clearly,

lim
n!1

hxn; G�xni = �;

because limn!1hLxn; G�xni = � and

lim
n!1

kxn � Lxnk = 0:

Let Gxn = �nxn + 'nyn; (yn?xn; kynk = 1) then limn!1 �n = �; because

lim
n!1

hGxn; xni = lim
n!1

hxn; G�xni = �

but kGxnk2 = j�nj2 + j'nj2 = 1; so we have that limn!1 j'nj =
p
1� j�j2: Now for

without loss of generality, there exists an integer M such that j�M � �j < �
8 : Choose

'0M such that j'0M j =
p
1� j�j2; j'M � '0M j < �

8 : We have that

GxM = �MxM + 'MyM � �xM + �xM � '0MyM + '0MyM

= (�� �)xM + ('M � '0M )yM + �xM + '0MyM :

Let qM = �xM + '0MyM ;

GxM = (�� �)xM + ('M � '0M )yM + qM :
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Suppose that y?xM ; then

hGxM ; Gyi = (�� �)hxM ; Gyi+ ('M � '0M )hyM ; Gyi+ hqM ; Gyi
= 0;

because G�G is a projection from H to RanL: It follows that

jhqM ; Gyij � j�M � �j � kyk+ j'M � '0M j � kyk �
�

4
kyk:

If we suppose that Gy = �qM + y0; (y0?qM ; ) then y0 is uniquely determined by y:
Hence we can de�ne V as follows

V : xM ! qM ; y ! y0; �xM + 'My ! �qM + 'My
0;

with both �; ' being complex numbers. V is a linear operator. We prove that V is a
contraction. Now,

kV xMk2 = kqMk2 = j�j2 = j'0M j2 = 1;

kV yk2 = kGyk2 � j�yj2 � kGyk2 � kyk2:

It follows that

kV �k2 = k�k2kV xMk2 + j'j2kV yk2 � j�j2 + j'j2 = 1;

for each x 2 H satisfying that x = �xM + 'My; kxk = 1; xM?y; which is equivalent
to that V is a contraction. From the de�nition of V , we can show that

kGxM � V xMk2 = j�� �j2 + j'M � '0M j2 �
2�2

16
=
1

8
�2:

If y?xM ; kyk � 1 then obtain

kGy � V yk = j�jkV xMk = jhGy; V xM ij = jhqM ; Gyij <
�

4
:

Hence for any x 2 H; x = �xM + 'My; kxk = 1;

kGx� V xk2 = k�(G� V )xM + '(G� V )yk2

= j�j2k(G� V )xMk2 + j'j2k(G� V )yk2

< j�j2�
2

16
+ j'j2�

2

16

<
�2

8
;

which implies that
k(G� V )xk < �

2
; kxk = 1;

and hence k(G� V )k < �
2 : Let Z = V J . Then Z is what we want and this completes

the proof.
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3 Norm Attainability for Elementary Operators

In this section we consider norm-attainability for inner derivation, generalized deriva-
tions and general elementary operators. We utilize the technique and the conditions
in Theorem 2.1 in our work in this section. We start with the inner derivation in the
lemma below.

LEMMA 3.1. Let S 2 B(H): �S is norm-attainable if there exists a vector � 2 H
such that k�k = 1; kS�k = kSk; hS�; �i = 0:
PROOF. For any x satisfying that x?f�; S�g; de�ne X as follows

X : � ! �; S� ! �S�; x! 0:

Since X is a bounded operator on H and kX�k = kXk = 1;

kSX� �XS�k = kS� � (�S�)k = 2kS�k = 2kSk:

It follows that k�Sk = 2kSk via the result in [3, Theorem 1], because hS�; �i = 0 2
W0(S): Hence we have that kSX � XSk = 2kSk = k�Sk: Therefore, �S is norm-
attainable.

THEOREM 3.2. Let S; T 2 B(H) If there exists vectors �; � 2 H such that
k�k = k�k = 1; kS�k = kSk; kT�k = kTk and 1

kSk hS�; �i = �
1
kTk hT�; �i; then �S;T is

norm-attainable.

PROOF. By linear dependence of vectors, if � and T� are linearly dependent,
i.e.,T� = �kTk�; then it is true that j�j = 1 and jhT�; �ij = kTk. It follows that
jhS�; �ij = kSk which implies that S� = 'kSk� and j'j = 1: Hence

D
S�
kSk ; �

E
= ' =

�
D
T�
kTk ; �

E
= ��: De�ning X as X : � ! �; f�g? ! 0; we have kXk = 1 and

(SX �XT )� = '(kSk + kTk)�; which implies that kSX �XTk = k(SX �XT )�k =
kSk+ kTk: By [3], it follows that

kSX �XTk = kSk+ kTk = k�S;T k:

That is �S;T is norm-attainable. If � and T� are linearly independent, then
���D T�

kTk ; �
E��� <

1; which implies that
���D S�

kSk ; �
E��� < 1: Hence � and S� are also linearly independent.

Let us rede�ne X as follows: X : � ! �; T�
kTk ! � S�

kSk ; x ! 0; where x 2 f�; T�g?:
We show that X is a partial isometry. Let

T�

kTk =
�
T�

kTk ; �
�
� + �h; khk = 1; h?�:

Since � and T� are linearly independent, � 6= 0: So we have that

X
T�

kTk =
�
T�

kTk ; �
�
X� + �Xh = �

�
S�

kSk ; �
�
� + �Xh;
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which implies that
D
X T�
kTk ; �

E
= �

D
S�
kSk ; �

E
+ �hXh; �i = �

D
S�
kSk ; �

E
: It follows then

that hXh; �i = 0 i.e., Xh?�(� = X�): Hence we have that



� S�kSk ; �
�
�





2 + k�Xhk2 = 



X T�

kTk





2 = ����� T�kTk ; �
�����2 + j� j2 = 1;

which implies that kXhk = 1: Now it is evident that X a partial isometry and k(SX �
XT )�k = kSX �XTk = kSk + kTk; which is equivalent to k�S;T (X)k = kSk + kTk:
By Lemma 3.1 and [3], k�S;T k = kSk+ kTk: Hence �S;T is norm-attainable.
THEOREM 3.3. Let S; T 2 B(H) If both S and T are norm-attainable then the

basic elementary operator MS; T is also norm-attainable.

PROOF. For any pair (S; T ) it is known that kMS;T k = kSkkTk: We can assume
that kSk = kTk = 1: If both S and T are norm-attainable, then there exists unit vectors
� and � with kS�k = kT�k = 1:We can therefore de�ne an operator X by X = h�; T �i�.
Clearly, kXk = 1: Therefore, we have kSXTk � kSXT�k = kkT�k2S�k = 1: Hence,
kMS;T (X)k = kSXTk = 1; that is MS;T is also norm-attainable.
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