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Abstract

Utility function is one of the most useful tools in mathematical finance, deci-
sion analysis and economics. The concept of expected utility is used in economics
to describe the behavior of a decision-maker choosing between a certain number
of random gains. In this paper, some generalizations of the Bernoulli’s inequality
are derived by using methods from the utility theory. In particular, we obtain
Harmonic-Geometric-Arithmetic mean inequality and give a generalization of it.

1 Introduction

The notion of utility goes back to Daniel Bernoulli [2]. Because the expected pay off in
the game of the St. Petersburg Paradox is infinite, Bernoulli was the first who suggested
a utility function as a solution to the St. Petersburg Paradox. The first axiomatic
development of utility theory was achieved by Von Neumann and Morgenstern [18]
who argued that the existence of a utility function could be derived from a set of
axioms governing a preference ordering. Other developments are due to Marschak
[13], Herstein and Milnor [9] and especially Fishburn [6, 7]. Borch [3] showed how
utility theory could be used to formulate and solve some problems that are relevant to
insurance. Most of the original papers of Borch have been reprinted in his books [3, 4].
Abbas [1] introduced a relation between probability and utility based on the concept of
a utility density function and showed the application of this relation via the maximum
entropy principle.
Friedman et al. [8] introduced utility-based generalizations of the Shannon entropy

and Kullback-Leibler information measure and called them U-entropy and U-relative
entropy and found various properties for these generalized quantities similar to the
classical concepts of information theory. For a parametric family of utility functions
Hoseinzadeh et al. [10] derived some links between U-relative entropy and other diver-
gence measures. Hoseinzadeh et al. [11] extended Markov’s inequality for probabilities
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from the U-entropy viewpoint and derived a link between conditional U-entropy and
conditional Renyi entropy.
In this paper, some generalizations of Bernoulli’s inequality are obtained by the

concept of the certainty equivalent that was introduced in utility theory. Also, we
derived an important and useful inequality in statistics, i.e. the Harmonic-Geometric-
Arithmetic mean inequality and give a generalization for it.

2 Utility Functions

An investor’s subjective probabilities numerically represent his beliefs and information,
and his utilities represent his tastes and preferences. Utility functions provide us with
a method to measure an investor’s preferences for wealth and the amount of risk he is
willing to undertake in the hope of gaining greater wealth.
A utility function is a twice-differentiable function of wealth u(x) which has the

following properties:

(i) u(x) is a strictly increasing function of x,

(ii) u(x) is a strictly concave function of x.

The first property states that utility increases with wealth, i.e., that more wealth
is preferred to less wealth. The second property states that the utility function is
concave or, in other words, that the marginal utility of wealth, u′(x), decreases as
wealth increases, or equivalently, that the gain of utility resulting from the monetary
gain of g, u(x+ g)− u(x), be a decreasing function of wealth x. The utility functions
of most people tend to be concave, at least for large gains or large losses. It is easy
to see that if u(x) is a utility function, then for constant a > 0 and b, the function
w(x) = au(x) + b is also a utility function. For any utility function u(x), we consider
the following function:

r (x) = −u
′′ (x)

u′ (x)
.

This is called absolute risk aversion function which is a positive function. It is also
generally agreed in finance theory that for a utility function to be realistic with regard
to economic behavior, its absolute risk aversion should be a decreasing function of
wealth.
The most common utility functions are as follows:

• Exponential utility function with parameter α > 0,

u (x) =
1− e−αx

α
for −∞ < x <∞.

Note that this utility tends to the finite value 1
α as x→∞. For the exponential

utility function, r(x) = α, −∞ < x < ∞. Thus, the exponential utility function
yields a constant risk aversion.
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• Logarithmic utility function with parameters α > 0, β, γ,

u (x) = α ln (x− β) + γ for x > β.

For the logarithmic utility function, r(x) = 1
x−β , x > β. Hence the risk aversion

is a decreasing function of wealth, which may be typical for some investors.

• Iso-Elastic utility function is a class of utility functions as follows:

u(x) =
xα − 1
α

for α < 1, α 6= 0 and x > 0.

This class has the property of u(kx) = f(k)u(x) + g(k), for all k > 0 and for
some function f(k) > 0 and g(k) which are independent of x. We note that
this utility tends to u(x) = lnx as α → 0. For the Iso-Elastic utility function,
r(x) = 1−α

x , that is a decreasing function of wealth, which may be typical for
some decision-maker.

3 Stochastic Orders

Stochastic orders and inequalities play an important role in many diverse areas of prob-
ability and statistics and have been used during the last 40 years. Such areas include
reliability theory, queuing theory, survival analysis, economics, insurance, actuarial
sciences, operations research and management science. Several orders of two random
variables (or their distribution functions) have been studied by Shaked and Shanthiku-
mar [15]. The simplest way of comparing two random variables is by the comparison
of the associated means. However, such a comparison is based on only two single num-
bers (the means) and therefore it is often not very informative. In addition to this,
the means sometimes do not exist. In many instances in applications one has more
detailed information, for the purpose of comparison of two distribution functions, than
just the two means. Let X and Y be two random variables defined on a probability
space. Several orders of univariate distribution functions are as follows:

• The random variable X is said to be smaller than Y in the usual stochastic order
(denoted by X ≤st Y ) if and only if,

P{X > x} > P{Y > x} for all x ∈ (−∞,∞).

• The random variable X is said to be smaller than Y in the convex order (denoted
by X ≤cx Y ) if and only if,

E[φ(X)] ≤ E[φ(Y )],

for all convex functions φ : R→ R, provided the expectations exist.

• The random variable X is said to be smaller than Y in the increasing convex
[concave] order (denoted by X ≤icx Y [X ≤icv Y ]) if and only if,

E[φ(X)] ≤ E[φ(Y )],

for all increasing convex [concave] functions φ : R→ R, provided the expectations
exist.
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Other orders such as hazard rate order, mean residual life order, likelihood ratio
order have been studied by Shaked and Shanthikumar [15]. We will concentrate on a
special case of this order which will be defined as expected utility order.

4 Main Results

In this section, via the monotone concave order, we order two random gains by means of
their expected utilities. In particular, a random gain will be replaced by a fixed amount
that is named the certainty equivalent. This notion can be used by the consumer
who wants to determine the maximal premium he or she is willing to pay to obtain
full coverage. Also, by means of this concept, we obtain some useful mathematical
inequalities.

4.1 Preference Ordering of Random Gains

Now we consider a decision-maker with initial wealth w who has the choice between a
certain number of random gains. By using the monotone concave order and a utility
function, as an increasing concave function of wealth, we can compare two random
gains as follows:
The random gain G1 is preferred over the random gain G2 in the expected utility

order (denoted by G1 ≤Eu G2) if and only if,

E[u(w +G1)] > E[u(w +G2)],

provided the expectations exist. This defines a preference ordering on the set of random
gains. On the other hand since u(x) is a concave function, by Jensen’s inequality for
any random variable G, we can write,

u(w + E[G]) > E[u(w +G)].

Therefore, if a decision-maker can choose between a random gain G and a fixed amount
equal to its expectation, he will prefer the latter. This leads us to the following defini-
tion.

DEFINITION. The certainty equivalent, π, associated with the random gain G is
defined by the condition that the decision-maker is indifferent between receiving G or
the fixed amount π, i.e.,

u(w + π) = E[u(w +G)]. (1)

Since u(x) is a strictly increasing function, the last inequality leads us to the following
important inequality:

π < E[G]. (2)

In the next section, by using the inequality (2) and by means of a random gain with
known distribution, we derive some useful mathematical inequalities.
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4.2 Generalizations of Bernoulli’s Inequality

Suppose that n is a positive integer and x > −1. Then the inequality

(1 + x)n ≥ 1 + nx,

is known as the Bernoulli’s inequality which plays an important role in mathematical
analysis and its applications. Recently, various generalizations of Bernoulli’s inequality
are obtained by many researches. For example, the following generalizations of this
inequality were introduced by Kuang [12].

THEOREM 1. Let x > −1. If α > 1 or α < 0, then

(1 + x)α ≥ 1 + αx,

and if 0 < α < 1, then
(1 + x)α ≤ 1 + αx,

in which, equalities hold if and only if, x = 0.

THEOREM 2. Let ai ≥ 0, xi > −1, i = 1, ..., n and
∑n
i=1 ai ≤ 1. If ai ≥ 1 or

ai ≤ 0, then
n∏
i=1

(1 + xi)
ai ≤ 1 +

n∑
i=1

aixi,

and if xi > 0, or −1 < xi < 0, i = 1, ..., n, then

n∏
i=1

(1 + xi)
ai ≥ 1 +

n∑
i=1

aixi.

By using methods on the theory of majorization, some generalizations of Bernoulli’s
inequality were established by Shi [16].
In the next theorems, by applying methods on the utility theory, some generaliza-

tions of Bernoulli’s inequality are established.

THEOREM 3. For w > 0, and 0 ≤ p ≤ 1, we have that(
1 +

1

w

)p
≤ 1 + p

w
, (3)

equality holds if and only if, w →∞.

PROOF. Suppose that the random gain G has the Bernoulli distribution with pa-
rameter 0 < p < 1. Consider the logarithmic utility function and using equation (1) we
can write

ln(w + π) = (1− p) ln(w) + p ln(w + 1).
Solving this equation with respect to π leads to π = w[(1 + 1

w )
p − 1]. Using E(G) = p

and applying inequality (2) leads to the inequality (3).
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THEOREM 4. Let 0 ≤ pi ≤ 1, w > 0 and ai, are positive real numbers such that
w + ai > 0, i = 1, ..., n. Then we have

n∏
i=1

(1 +
ai
w
)pi ≤

n∑
i=1

aipi
w

+ 1. (4)

PROOF. Let G be a discrete random variable with probability distribution p =
(p1, p2, ..., pn) which is defined over a finite support {a1, a2, ..., an}. By means of the
logarithmic utility function and by using (1), we obtain:

ln(w + π) =

n∑
i=1

pi ln(w + ai),

solving this equation with respect to π yields

π = w

[
n∏
i=1

(1 +
ai
w
)pi − 1

]
.

Note that E(G) =
∑n
i=1 aipi. Then by (2), we may then complete the proof.

COROLLARY 1. If p = ( 1n ,
1
n , ...,

1
n ) and xi = 1 +

ai
w , i = 1, ..., n, (4) is reduced to

n
√
x1x2...xn ≤

∑n
i=1 xi
n

,

which is the Geometric-Arithmetic mean inequality.

Various proofs of the Geometric-Arithmetic mean inequality are known in the liter-
ature, (see, for example, Bullen [5]). A simple proof of the Geometric-Arithmetic mean
inequality was given by Uchida [17].

THEOREM 5. Let 0 ≤ pi ≤ 1 and xi > 0, i = 1, ..., n be positive real value
numbers. Then we have

n∑
j=1

pj

n∏
i 6=j

xi ≥
n∏
i=1

xi
1−pi . (5)

PROOF. Define

yi =

n∏
j 6=i

xj for i = 1, ..., n.

Suppose that G is a discrete random variable on the support {y1, y2, ..., yn} such that,
p = (p1, p2, ..., pn) is the probability distribution of G, i.e., pi = P (G = yi), i = 1, ..., n.
Consider a decision-maker with initial wealth w = 0 and logarithmic utility function.
Hence, from (1) we obtain

lnπ = E[ln(G)] =

n∑
i=1

pi ln

 n∏
j 6=i

xj

 = ln

(
n∏
i=1

xi
1−pi

)
.
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Solving this equation with respect to π we conclude that π =
∏n
i=1 x

1−pi
i . On the other

hand, E(G) =
∑n
j=1 pj

∏n
i6=j xi and inequality (2) imply the proof.

COROLLARY 2. Inequality (5) can be written as follows:∏n
I=1 xi∑n

j=1 pj
∏n
i 6=j xi

≤
n∏
i=1

xi
pi .

For p = ( 1n ,
1
n , ...,

1
n ), we derive:

n
1
x1
+ 1

x2
+ ...+ 1

xn

≤ n
√
x1x2...xn,

that is the Harmonic-Geometric mean inequality.

COROLLARY 3. By setting xi = 1 + ai
w , i = 1, ..., n in Theorem 4 and using

Theorem 5 we derive ∏n
i=1 xi∑n

j=1 pj
∏n
i 6=j xi

≤
n∏
i=1

xi
pi ≤

n∑
i=1

pixi.

So, these inequalities give a generalization for the Harmonic-Geometric-Arithmetic
mean inequality, (See, for example, Napoca [14]).

THEOREM 6. Let m,n, k are nonnegative integer such that for i = 0, 1, ..., n
inequalities i ≤ k ≤ n ≤ m hold. Then for all w > 0, we have

k∏
i=0

[
1 +

i

w

]Ci
nC

k−i
m−n

≤
[
1 +

nk

mw

]Ck
m

,

in which,

Cin =
n!

i!(n− i)! .

PROOF. Let G be a random gain with the Hypergeometric probability distribution
as follows:

p(i) =
CinC

k−i
m−n

Ckm
for i = 0, 1, ..., k, k = 1, 2, ..., n and m ≥ n.

By considering equation (1) and u(x) = lnx, via some calculation we have

E[ln(w +G)] = ln

[
k∏
i=0

(w + i)C
i
nC

k−i
m−n

] 1

Ckm

.

Now by solving this equation with respect to π we obtain

π =

[
k∏
i=0

(w + i)C
i
nC

k−i
m−n

] 1

Ckm

− w.

By applying inequality (2) and E(G) = k nm , we have the conclusion.
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5 Conclusions

In this work, motivated by monotone concave order we compared two random gains by
means of their expected utilities. Also, by using the concept of the certainty equivalent
in utility theory, we obtained some generalization of the Bernoulli’s inequality. As
a special case, we derived the Harmonic-Geometric-Arithmetic mean inequality and
obtained a generalization of it.
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