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Abstract
We consider a set of discrete-time coupled algebraic Riccati equations that

arise in quadratic optimal control of Markovian jump linear systems. The LMI
approach for computing the maximal symmetric solution of this system is studied.
The special case of the Riccati equations with applications to �nancial modeling is
commented. We construct two new modi�cations of the standard LMI approach
and we show how to apply these new modi�cations to the investigated problem.
Computer realizations of all modi�cations are compared. Numerical experiments
are given where the new LMI modi�cations are numerically compared. Based on
the experiments the main conclusion is the new LMI modi�cations are faster than
the standard LMI approach.

1 Introduction

In recent years, a special class of linear systems subject to abrupt changes in their
structures have been investigated. This is the case of Markovian jump linear systems
(MJLS), which comprise an important family of models subject to abrupt variations.
There are many examples in the literature showing the importance of the di¤erent types
of discrete-time Riccati equations involved in the construction of the optimal controls
of di¤erent problems of robust control (see [2, 6, 8, 12] and the literature therein).
The properties and the numerical solutions of di¤erent types of discrete-time Riccati
equations have been intensively studied in many papers [7, 3, 14, 21].
Consider the optimization problem described by the following more complicated

dynamic system (�rst introduced on 2010 in [9]):

x(t+ 1) =

"
A0(�t) +

rX
l=1

wl(t)Al(�t)]x(t) + [B0(�t) +
rX
l=1

wl(t)Bl(�t)

#
u(t)

and the cost functional

J =
1X
t=0

E

"�
x(t)
u(t)

�T �
Q(�t) L(�t)
LT (�t) R(�t)

��
x(t)
u(t)
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where f�tgt�0 is a Markov chain taking values in f1; 2; : : : ; Ng, while fw(t)gt�0 is a
sequence of independent random vectors (w(t) = (w1(t); : : : ; wr(t))

T ), for details see
e.g. [9, 10, 11].
In the construction of the optimal control ~u in the above optimization problem

a crucial role is played by the maximal solution of the following system of discrete-
time generalized Riccati equations (DTGRE) for i = 1; : : : ; N with unknown matrices
X(1); : : : ; X(N):

X(i) = P(i;X)
:=

Pr
k=0 Ak(i)

TEi(X)Ak(i) +Q(i)

�(
Pr

k=0Ak(i)
TEi(X)Bk(i) + L(i))

�
R(i) +

Pr
k=0Bk(i)

TEi(X)Bk(i)
��1

� (
Pr

k=0 Bk(i)
TEi(X)Ak(i) + L(i)T ) ; i = 1; : : : ; N

; (1)

with assumptions thatR(i)+
Pr

k=0Bk(i)
TEi(X)Bk(i) > 0 and E(X) = (E1(X); : : : ; EN (X))

with X = (X(1); : : : ; X(N)) and

Ei(X) =
NX
j=1

�ij Xj ; Xj is an n� n Hermitian matrix ;

and � = (�ij) denotes a transition probability matrix. Necessary and su¢ cient condi-
tions for the existence of the maximal solution and stabilizing solution of this kind of
discrete-time nonlinear equations were presented in [9, 10] in terms of the concept of
the stabilizability of a sequence of linear and positive operators. A solution ~X of (1) is
called maximal if ~X � X for any solution X. The direct proof of the existence of the
maximal solution is given in Theorem 5.11 from [11]. An e¤ective modi�cation of the
proposed iterative method from [10] to �nd the maximal and stabilizing solution of (1)
is proposed in [15].
Lately, there exists an increasing interest to consider a computational approach

to stochastic algebraic Riccati equations via a semide�nite programming problem over
linear matrix inequalities (LMIs). Similar investigations can be found in [17, 18, 19, 22].
The main result from such studies is that the equivalence between the feasibility of the
LMIs and the solvability of the corresponding stochastic Riccati equation is proved.
Moreover, the maximal solution of a given stochastic algebraic Riccati equation can be
obtained by solving a corresponding convex optimization problem (an LMI approach).
Many authors have considered a semide�nite programming problem as an unifying

approach to the linear quadratic problems in the absence of the positive de�niteness
(semide�niteness) of the cost matrices. In this paper, we develop computational ap-
proaches, based on the LMIs, to solve the set of nonlinear equations (1) with possibly
inde�nite matrices in the cost functional. The weighting matrices R(i); i = 1; : : : ; N
are singular or zero ones in very important practical problems, see [4, 5] where the
applications in the portfolio optimization are investigated.
The paper is devoted to the LMI approach and its modi�cations. The LMI approach

is very important for practical real world problems. Very often the LMI approach is
the only method for solving a given class of problems. We introduce two new sets
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of nonlinear equations equivalent to the DTGRE (1) which lead us to the new convex
optimization problems. The LMI approach applied to these new optimization problems
gives on a fast way to �nd the maximal and stabilizing solution to (1). We will compare
the numerical e¤ectiveness of the introduced LMI solvers. Numerical simulations are
used to demonstrate the performance of the considered solvers.
The notation Hn stands for the linear space of symmetric matrices of size n over

the �eld of real numbers. For any X;Y 2 Hn, we write X > Y or X � Y if X � Y
is positive de�nite or X � Y is positive semide�nite. The linear space Hn is a Hilbert
space with the Frobenius inner product < X;Y >= trace(XY ).

2 The Standard LMI Approach

Thus, following the classical linear quadratic theory we know that the following opti-
mization problem is associated with (1), for example see Dragan et al. [11]:

max
PN

i=1 hI;X(i)i

subject to i = 1; : : : ; N0BB@
�X(i) +Q(i)
+
Pr

l=0 Al(i)
TEi(X)Al(i)

Pr
l=0Al(i)

TEi(X)Bl(i) + L(i)

Pr
l=0 Bl(i)

TEi(X)Al(i) + L(i)T R(i) +
Pr

l=0Bl(i)
TEi(X)Bl(i)

1CCA � 0

R(i) +
Pr

l=0Bl(i)
TEi(X)Bl(i) > 0 ;

X(i) = X(i)T :

(2)

The case r = 0 is analyzed by Costa and Marques in [7]. The relation between the
maximal solution to the set equations (1) (r = 0) and the solution of the optimization
problem (2) (r = 0) is given in Theorem 2 in the same paper.
The relation between the maximal solution to (1) (r > 0) and the optimal solution

to the related semide�nite programming problem is given in the following theorem:

THEOREM 1. Assume that (A;B) is stabilizable and there exists a solution to the
inequalities P(i;X)�X(i) � 0 for i = 1; : : : ; N . Then there exists a maximal solution
X+ of (1) if and only if there exists a solution X̂ for the above convex programming
problem (2) with X+ � X̂.
Thus, the feasibility of the optimization problem (2) is necessary and su¢ cient for

the solvability of the system (1). In addition, if
�
Q(i) L(i)
LT (i) R(i)

�
� 0 and R(i) > 0,

then the maximal solution is positive semide�nite and if all matrices
�
Q(i) L(i)
LT (i) R(i)

�
;

R(i) are positive de�nite then the maximal solution is positive de�nite.
We de�ne the real matrices Ak; Bk such that Ak = (Ak(1); : : : ; Ak(N)); Bk =

(Bk(1); : : : ; Bk(N)) where Ak(i) is an n� n matrix and Bk(i) is an n�m matrix k =
0; 1; : : : ; r and i = 1; : : : ; N , andA = (A0; A1; A2; : : : ; Ar) andB = (B0; B1; B2; : : : ; Br).
We use the following de�nition [11].
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DEFINITION 1. We say that the couple (A;B) is stabilizable if for some F =
(F (1); : : : ; F (N)) the closed loop system:

x(t+ 1) = [A0(�t) +B0(�t)F (�t) +
rX

k=0

wk(t)(Ak(�t) +Bk(�t)F (�t))]x(t)

is exponentially stable in mean square (ESMS).

The matrix F involved in the above de�nition is called stabilizing feedback gain.

3 The Modi�ed LMI Approaches

In this paper we investigate the numerical solvability of the semide�nite programming
problem (2) for di¤erent type of matrix R(i); i = 1; : : : ; N . However, the numerical
experiments for �nding the maximal solution of (1) show that the LMI method (2)
is slowly working for di¤erent types of matrices R(i) in the case r = 0 [16]. Here we
introduce a new modi�cation to accelerate the LMI method for solving the optimization
problem (2) in special cases of weighting matrices. Our new modi�cation will accelerate
the considered optimization problems over LMIs. In many applications of control
system theory the following fact is used (see [1]).
It is well known that the control matrix B has full column rank in di¤erent con-

siderations of the control theory and then there exists a symmetric matrix Y such
that R + BT Y B is invertible. This conclusion is applied in our consideration. The
introduced equation (1) appeared in the portfolio optimization [20] where the matrices
R(i); i = 1; : : : ; N are zero. In addition, the matrices B0(i); : : : ; Br(i) has the fol-

lowing property: the matrix

0B@ B0(i)
...

Br(i)

1CA has the full column rank (for instance, see

the stochastic models with their realization in the portfolio optimization described in
[20]). Thus, we choose symmetric matrices Z(i); i = 1; : : : ; N such that the matrices
R(i)+

Pr
k=0Bk(i)

TEi(Z)Bk(i) are positive de�nite. The standard approach is to choose
the new matrices Z(i) of the form Z(i) = �I, for all values of i. In this case the new ma-
trices Z(i) can be considered as the approximate points to the X(i). We take � = 0:005
in the numerical simulations in the paper. Next step is to change the variables X(i).
We introduce new variables Y (i) with substitution X(i) = Z(i) + Y (i); i = 1; : : : ; N .
Then, we put X = Z + Y. From (1) it is obtained the following set of Riccati

equations regarding to Y = (Y (1); : : : ; Y (N)):

Y (i) = T (i;Y) :=
Pr

k=0 Ak(i)
TEi(Y)Ak(i) + ~Q(i)

�(
Pr

k=0Ak(i)
TEi(Y)Bk(i) + ~L(i))

�
�
~R(i) +

Pr
k=0Bk(i)

TEi(Y)Bk(i)
��1

� (
Pr

k=0 Bk(i)
TEi(Y)Ak(i) + ~L(i)T ) i = 1; : : : ; N

; (3)
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where (
~Q(i) =

Pr
k=0 Ak(i)

TEi(Z)Ak(i) +Q(i)� Z(i);
~L(i) = L(i) +

Pr
k=0Ak(i)

TEi(Z)Bk(i) :

Further on, the new optimization problem over the LMIs condition related to (3)
is derived:

max
PN

i=1 hI; Y (i)i

subject to i = 1; : : : ; N0BB@
�Y (i) + ~Q(i)

+
Pr

l=0 Al(i)
TEi(Y)Al(i)

Pr
l=0Al(i)

TEi(Y)Bl(i) + ~L(i)

Pr
l=0 Bl(i)

TEi(Y)Al(i) + ~L(i)T ~R(i) +
Pr

l=0Bl(i)
TEi(Y)Bl(i)

1CCA � 0

~R(i) +
Pr

l=0Bl(i)
TEi(Y)Bl(i) > 0

Y (i) = Y (i)T :

(4)

Thus, we could use two semide�nite programming problems for solving the intro-
duced DTGRE (1). In the �rst problem (2) the cost matrices R(1); : : : ; R(N) may
be inde�nite, negative de�nite or singular. However, in the second semide�nite pro-
gramming problem (4) we choose the symmetric matrices Z(i); i = 1; : : : ; N such that
the corresponding matrices ~R(1); : : : ; ~R(N) are positive de�nite. Thus, in order that
~R(i) +

Pr
l=0Bl(i)

TEi(Y)Bl(i) > 0 it is enough the inequality Y (i) > 0 holds for all
i = 1; : : : ; N . Then, we construct the next semide�nite programming problem

max
PN

i=1 hI; Y (i)i

subject to i = 1; : : : ; N0BB@
�Y (i) + ~Q(i)

+
Pr

l=0 Al(i)
TEi(Y)Al(i)

Pr
l=0Al(i)

TEi(Y)Bl(i) + ~L(i)

Pr
l=0 Bl(i)

TEi(Y)Al(i) + ~L(i)T ~R(i) +
Pr

l=0Bl(i)
TEi(Y)Bl(i)

1CCA � 0

Y (i) > 0 :

(5)

Moreover, if the last semide�nite programming problem has no optimal solution (which
has to be positive de�nite) then if the set of DTGRE (1) has the maximal solution, it
is not a positive de�nite one.
We will compare numerically these two semide�nite programming problems (2)

and (5) with numerical simulations. Before we do this we will introduce our next
modi�cation to (1) which leads us to a new semide�nite programming problem.

Let us consider the given set of nonlinear equations (1):

X(i) = P(i;X); i = 1; : : : ; N :
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Our new idea is to make the following change of unknowns based on the developments
in [13]:

Y = (Y (1); : : : ; Y (N)) ; where Y (i) = Ei(X) for i = 1; : : : ; N :

Then, we have

X(i) =
NX
j=1

�ij Y (j) ; whereM =
�
�ij
�
= ��1; � = (�ij) :

We transform the set of nonlinear equations (1) consequently and using notations8>>>>>><>>>>>>:

�ip =
P

s 6=i �is�sp ; i; p = 1; : : : ; N ;

~Ak(i) =
q

�ii
1��ii Ak(i) ;

~Q(i) = �ii
1��ii Q(i) ;

~L(i) =
q

�ii
1��ii L(i) ; i = 1; : : : ; N; k = 0; : : : ; r ;

Gi(Y) =
P

p6=i ip Y (p) ; ii = 0; ip =
�ip
1��ii ; for i 6= p :

The new set of discrete time algebraic Riccati equations is obtained:

Y (i) =
Pr

l=0
~Al(i)

TY (i) ~Al(i) + ~Q(i) + Gi(Y)

�(
Pr

l=0
~Al(i)

TY (i)Bl(i) + ~L(i))
�
R(i) +

Pr
l=0Bl(i)

TY (i)Bl(i)
��1

� (
Pr

l=0 Bl(i)
TY (i) ~Al(i) + ~L(i)

T ) ; i = 1; : : : ; N :

(6)

If (ip)
N
1 � 0 and �ii

1��ii ; i = 1; : : : ; N are positive numbers the set of nonlinear
equations (6) is equivalent to the system (1): Thus the map Gi(Y) is a positive one,
i.e. if Y � 0 then Gi(Y) � 0 for i = 1; : : : ; N .
We are ready to construct the new semide�nite programming problem related to

the above set of Riccati equations (6):

max
PN

i=1 hI; Y (i)i

subject to i = 1; : : : ; N0BBB@
�Y (i) + ~Q(i) + Gi(Y)

+
Pr

l=0
~Al(i)

TY (i) ~Al(i)

Pr
l=0

~Al(i)
TY (i)Bl(i) + ~L(i)

Pr
l=0 Bl(i)

TY (i) ~Al(i) + ~L(i)
T R(i) +

Pr
l=0Bl(i)

TY (i)Bl(i)

1CCCA � 0

R(i) +
Pr

l=0Bl(i)
TY (i)Bl(i) > 0

Y (i) = Y (i)T :

(7)

Thus, we have obtained three equivalent semide�nite programming problems (2),
(5) and (7). The optimal solution of each of them lead us to the maximal solution to
the set of discrete-time generalized Riccati equations (1).
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4 Numerical Experiments

We investigate the numerical behavior of the LMI approach applied to the described
optimization problems LMI: (2), Im LMI: (5) and LMI(Y): (7) for �nding the maximal
solution to the set of discrete-time generalized Riccati equations (1). We will carry out
some experiments for this purpose.
Our experiments are executed in MATLAB on a 1.7GHz PENTINUM computer.

In order to execute our experiments the suitable MATLAB procedures are used. The
MATLAB function mincx is applied with the relative accuracy equals to 1� e�10 for
solving the corresponding optimization problem.
We consider a family of examples in case N = 3; r = 2; n = 8; 9; : : : ; 15, where the

coe¢ cient real matrices are given as follows: A0(i); A1(i); A2(i); B0(i); B1(i); B2(i); L(i);
i = 1; 2; 3 were constructed using the MATLAB notations:

A0(1) = randn(n; n)=8; A0(2) = randn(n; n)=8; A0(3) = randn(n; n)=8;
A1(1) = randn(n; n)=8; A1(2) = randn(n; n)=8; A1(3) = randn(n; n)=8;
A2(1) = randn(n; n)=8; A2(2) = randn(n; n)=8; A2(3) = randn(n; n)=8;

B0(1) = 2 � full(sprand(n;m2; 0:3)); B0(2) = 2 � full(sprand(n;m2; 0:3));
B0(3) = 2 � full(sprand(n;m2; 0:3));
B1(1) = 2 � full(sprand(n;m2; 0:3)); B1(2) = 2 � full(sprand(n;m2; 0:3));
B1(3) = 2 � full(sprand(n;m2; 0:3));
B2(1) = 2 � full(sprand(n;m2; 0:3)); B2(2) = 2 � full(sprand(n;m2; 0:3));
B2(3) = 2 � full(sprand(n;m2; 0:3));

L(1) = L(2) = L(3) = zeros(n;m2);

Q(1) = diag[0; 1; : : : ; 1] ; Q(2) = diag[1; 0; 1; : : : ; 1] ;
Q(3) = diag[1; 1; 0; 1; : : : ; 1] :

In our de�nitions the functions randn(p,k) and sprand(q,m,0.3) return a p-by-k
matrix of pseudorandom scalar values and a q-by-m sparse matrix respectively (for
more information see the MATLAB description). The following transition probability
matrix

(�ij) =

0@ 0:67 0:17 0:16
0:30 0:47 0:23
0:26 0:10 0:64

1A
is applied for all examples.
In addition, we construct the following �ve tests of examples for di¤erent matrices

R(1); R(2) and R(3):
Test 1: m2 = n; R(1) = R(2) = R(3) = zeros(n; n).
Test 2: m2 = n.

R(1) = diag[�0:002; 0:25; : : : ; 0:25] ; R(2) = diag[�0:001; 0:75; : : : ; 0:75] ;
R(3) = diag[�0:0025; 0:5; : : : ; 0:5] ;

Test 3: m2 = 3; R(1) = R(2) = R(3) = zeros(3; 3).
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Test 4:

m2 = 3;
R(1) = diag[0:26; �0:0025; 0:45] ; R(2) = diag[0:15; �0:0012; 1:05] ;
R(3) = diag[1:25; �0:005; 0:012] ;

Test 5:

m2 = 3;
R(1) = �diag[0:0026; 0:0025; 0:0045] ; R(2) = �diag[0:0015; 0:0012; 0:0105] ;
R(3) = �diag[0:0125; 0:005; 0:0012] :

For our purpose we have executed hundred examples of each value of n for all
tests. All tables report the maximal number of iterations "m It" and average number
of iterations "av It" of each size for all examples needed for achieving the relative
accuracy. Results from experiments are given in table 1 with n = 10 and n = 5 for all
tests.

5 Conclusions

We have studied three optimization problems for �nding the maximal solution to a set
of discrete-time generalized Riccati equations (1).
We have investigated two numerical procedures for solving the new optimization

problems (5) and (7). We show how to apply problem (5) in the application for fast
solution a portfolio optimization problem because in this problem the weighting matri-
ces R(i); i = 1 : : : ; N are zero matrices (see [20]). In addition, we extend the approach
based on the substitution Y (i) = Ei(X) introduced in [13]. This extension (7) is ap-
plied to the considered set of generalized Riccati equations and numerically compared.
Numerical tests show the e¢ ciency of new optimization problem (7).
We have made numerical experiments for computing this solution and we have com-

pared the numerical results. Our numerical experiments con�rm the e¤ectiveness of
the proposed new transformations which lead us to the equivalent semide�nite pro-
gramming problems. We have compared the results from the experiments in regard of
the number of iterations and CPU time for executing the above optimization problems
for n = 15. The solution of the optimization problems achieve the same accuracy for
di¤erent number of iterations. The executed examples have demonstrated that the
LMI problem performance for di¤erent optimization problems require very close aver-
age numbers of iterations (see the columns "av It" for all tests). However, the CPU
time is di¤erent for the investigated optimization problems. The new optimization
problems Im LMI: (5) and LMI(Y): (7) based on the new transformations are faster
than the standard optimization problem LMI: (2). The LMI approach applied to the
semide�nite programming problem (5) is approximately twice faster than the (2) while
the LMI approach to the semide�nite programming problem (7) is six times faster than
the standard optimization problem (2). This conclusion descends from the numerical
simulations. The proof will be a subject of the future research.
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Table 1: Results from 100 runs for each value of n.

LMI: (2) Im LMI: (5) LMI(Y): (7)
n m It av It m It av It m It av It

Test 1
10 37 29.8 26 25.0 44 32.4
15 33 26.8 29 27.0 31 28.8

CPU time for executing for 10 runs
15 980 s 653 s 201 s

Test 2
10 26 24.2 26 24.6 40 25.9
15 33 26.8 29 27.0 31 28.8

CPU time for executing for 10 runs
15 980 s 653 s 201 s

Test 3
10 42 32.4 26 25.2 29 28.0
15 50 38.8 30 28.8 36 32.0

CPU time for executing for 10 runs
15 1257 s 574 s 159 s

Test 4
10 52 31.2 26 25.2 30 27.2
15 45 33.8 30 28.4 34 31.2

CPU time for executing for 10 runs
15 1258 s 558 s 166 s

Test 5
10 59 32.2 28 25.8 29 27.8
15 49 39.2 30 29.0 33 30.8

CPU time for executing for 10 runs
15 1372 s 569 s 158 s
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