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Abstract

We reconsider the error in van Cittert deconvolution. We show that without
any extra boundary conditions on higher derivatives of u, away from the boundary
the error in van Cittert deconvolution attains the high order of accuracy seen in
the periodic problem. This error result is important for di¤erential �lters and
approximate deconvolution models of turbulence.

1 Introduction

In multiscale modeling and simulation, one recurring problem is to estimate the e¤ects
of the unresolved �uctuations u0 := u�u on the means u. This is equivalent to the (ill
posed) problem of given u, construct an approximation to u that can be used for the
same purpose. One early method of doing so is the van Cittert approximation. Because
it is inexpensive in both computational e¤ort and programmer time, van Cittert has
been used as a basis of large eddy simulation turbulence modeling. We consider the
error in van Cittert deconvolution of a di¤erential �lter on a bounded domain under
non-periodic boundary conditions. We show that without any extra boundary compat-
ibility conditions on higher derivatives of u, away from the boundary the error in van
Cittert deconvolution attains the high order of accuracy seen in the periodic problem.
The �ltering problem is: given a function u(x) de�ned on a domain 
, compute

an approximation Gu = u(x) to u(x) which faithfully represents the behavior of u
on scales above some, user selected, �lter length (denoted "), and which truncates
scales smaller then O("). The deconvolution or de-�ltering problem is: given u �nd
an accurate reconstruction of u: When the �lter G : L2(
) ! L2(
) is smoothing,
G is compact and the exact deconvolution problem is ill-posed. One early method of
approximate deconvolution is the 1931 van Cittert [1] algorithm:

ALGORITHM 1. (van Cittert approximate deconvolution) Set u0 = u . Fix N
(moderate). For n = 1; 2; :::; N � 1, perform un+1 = un + fu�Gung:
De�ne DNu := uN .

Van Cittert deconvolution requires only a few steps of repeated �ltering. It is thus
both computationally cheap and easy to program, contributing to its popularity in
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various applications, such as turbulence modeling, e.g., [2]. The error in van Cittert
deconvolution is given explicitly by (1) below. For convolution �lters and in the absence
of boundaries, the RHS of (2.1) can be analyzed precisely by Fourier methods, e.g.,
[3], [4], [5]. With boundaries, there are signi�cant gaps between the improved accuracy
seen in computational practice and the pessimistic estimates of its global error obtained
in analysis.
The goal of this report is to close this gap somewhat. We use interior regularity

results for elliptic-elliptic singular perturbation problems to give error estimates for the
van Cittert deconvolution under non-periodic boundary conditions. We take the �lter
to be a di¤erential �lter, [6], speci�cally the extension of the Pao �lter, e.g., [7], to a
bounded domain. Let 
 be a bounded, regular, planar domain with smooth boundary
and 0 < " � 1 a small parameter. Given u 2 H1

0 (
)\Hk(
), u is the unique solution
of the elliptic-elliptic singular perturbation problem

�"24u+ u = u , in 
, and u = 0 , on @
.

The error formula (1) reduces the question of convergence rates to regularity. Un-
fortunately, regularity theory (sharp in 1d examples [8]) predicts no improvement in the
rate of convergence in the L2 norm, denoted jj � jj. We prove the following herein which
predicts improvement from higher order deconvolution in negative Sobolev norms and
optimal convergence away from the boundary.
THEOREM 1. ( Local and global deconvolution error estimates) Suppose N > 0 is

�xed and u 2 H1
0 (
) \Hk(
): Then

jju�D0ujj = jju� ujj � C"2jjujjH2(
):

If N = 1 we have in L2 and H�2;

jju�D1ujj � C"2jjujjH2(
) and jju�D1ujjH�2(
) � C"4jjujjH2(
):

If N = 1 and additionally 4u 2 H1
0 (
);

jju�D1ujj � C"4jjujjH2(
):

If 4u 6= 0 on @
 we have for any N � 0 �xed
jju�DNujj � C"2jjujjH2(
);

jju�DNujjH�2N (
) � C"2N+2jjujjH2(
):

Let s � 0 be �xed. Suppose u 2 H1
0 (
) \H2N+2(
): Let


N+1 � 
N � � � � � 
1 � 
0 � 
�1 � 

be subdomains with smooth boundaries. For j = N + 1; :::; 0 suppose


j has distance Cj" ln(1=") from @
j�1;

where Cj = C(s;N;
j ;
j�1). Then there is a C = C(N;Cj) such that

jju�DNujjL2(
N+1) � C"2N+2
�
jjujjH2N+2(
0) + "

sjjujj
�
:

REMARK 1. If the di¤erential �lter is replaced by a local averaging with radius
", then the computation on each 
j only uses values from @
j�1, making local error
estimates of the above type immediate.
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2 Proof of the Deconvolution Error Estimate

The error in van Cittert deconvolution is calculated by summing a geometric series,
[3], [4], [5], to be

u�DNu = (�1)N+1"2N+2(4N+1GN+1)u: (1)

Thus, accuracy of van Cittert depends on for what norms jjj � jjj and values on N , the
RHS is bounded uniformly in ":

jjj4N+1GN+1(u)jjj � C(u) <1 uniformly in ".

The proof will follow from the error representation (1) and two regularity results for
the elliptic-elliptic singular perturbation problem, Theorems 2.1 and 2.2 below. The
global regularity result in Theorem 2.1 was proven in [8], see also [2]. The interior
regularity result in Theorem 3 is a special case of Theorem 2.3, page 26 of Nävert [9]
(setting the convecting velocity to zero), see also [10]. For related estimates see [11],
[12], [13], [14]. We shall �rst recall these two results, give a preliminary lemma and
then give the proof (which is short with this preparation). Hk(
) denotes the Sobolev
space of all functions with derivatives of order � k in L2(
). The L2(
) norm is jj � jj
and H1

0 (
) := fv 2 H1 : v = 0 on @
g . For (1) we assume (in particular implying
u = 0 on @
)

u 2 H1
0 (
) \Hk(
): (2)

This condition precludes simple boundary layers in u but does not imply higher deriv-
atives of u are free of layers. The shift theorem implies that u 2 H1

0 (
) \Hk+2(
).
Since traces of 4u are thus well de�ned, �"24u+ u = u implies

u = 0 and 4u = 0 on @
:

THEOREM 2 (Theorem 1.1 in [8]). Suppose u 2 H1
0 (
) \H2(
): Then there is a

constant C > 0 independent of " such that

jjujjHl(
) � CjjujjHl(
) , for l = 0; 1; 2: (3)

If u 2 H1
0 (
) \H4(
), 4u 2 H1

0 (
): Then

jjujjHl(
) � CjjujjHl(
) , for l = 0; 1; 2; 3; 4: (4)

In general, suppose u 2 H2k(
)
T
H1
0 (
);4ju 2 H1

0 (
); j = 1; :::; k � 1: Then for
l = 1; :::; 2k;

jjujjHl(
) � CjjujjHl(
): (5)

Examples in [8] show that the limit of l � 2 in (3) is sharp unless higher derivatives
of u are zero on @
, as in (4).

THEOREM 3 (Special case of Theorem 2.3 in Nävert [9]). For u 2 Hk(
)\H1
0 (
)

consider
�"24u+ u = u , in 
, and u = 0 , on @
. (6)
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Let m � 0; s � 0. Let 
0 � 
00 � 
 be subdomains with smooth boundaries with

0 has distance C1" ln(1=") from @
00; 
00 has distance C2" ln(1=") from @
; where
Ci = Ci(s;m;


0;
00). Then the solution to (6) satis�es

jjujjHm(
0) � C
�
jjujjHm(
00) + "

sjjujj
�
:

Since uj@
 = 0 implies uj@
 = 0 and 4uj@
 = 0 the second order problem for u can
be converted into a fourth order problem for u by taking Laplacian of the equation.
Theorem 2.2 also follows from, for example, a small modi�cation of the proof of Lemma
2.2 in [15]. First we calculate the global regularity of repeated �ltering.

PROPOSITION 1. Let u 2 Hk(
)
T
H1
0 (
). We have for J � 1

jjGJujjHk(
) � CjjGJ�1ujjHk(
); k = 0; 1; :::; 2J:

PROOF. For n = 1 Theorem 3 implies

jjujjHk(
) � CjjujjHk(
) , for k = 0; 1; 2 and 4u = 0 on @
:

Since 4u = 0 on @
, we repeat. Indeed, G2u = Gu = u so that

jjujjHk(
) � CjjujjHk(
); for k = 0; 1; 2; 3; 4

and that
4u = 4u = 0 on @
:

Taking the Laplacian of the equation for u gives ��242u+4u = 4u , in 
. Now, let
x! @
 and use 4u = 4u = 0 on @
: This implies 42u = 4u = u = 0 on @
 so that
for u we have

jjujjHk(
) � CjjujjHk(
) , for k = 0; 1; 2; 3; 4; 5; 6:

The proof continues by induction.

We can now prove the deconvolution error estimate in Theorem 1.

PROOF. (Proof of Theorem 1) We consider 4N+1GN+1(u) and use Theorem 1.1
in [8] repeatedly. For N = 0 this is jj4(�"24+ 1)�1ujj :

jju�D0ujj = jju� ujj = "2jj4(�"24+ 1)�1ujj:

The �rst estimate follows since

jj4(�"24+ 1)�1ujj = jj4ujj � Cjjujj2 � Cjjujj2:

For N = 1 and under 4u 2 H1
0 (
) we have similarly that jjujj4 � Cjjujj4: Thus

jju�D1ujj = "4jj42ujj � C"4jjujj4 � C"4jjujj4:

For the H�2 estimate we use that 42u = 4
�
4u
�
: Step by step, using 4u = 0 on @


we �nd jj42ujj�2 � Cjj4ujj � Cjj4ujj � Cjjujj2, completing the proof. The case of
N > 1 follows the same way.
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For the interior estimates we use Theorem 2.2 as follows.

jju�DNujjL2(
N+1) = "2N+2jj(4N+1GN+1)ujjL2(
N+1) �
� C"2N+2jjGN+1ujjH2N+2(
N+1):

Note that jj�jj � jj�jj so that jjGjujj � jjujj for all j. Now GN+1u = �; � = GNu.
Thus, for any s > 0

jjGN+1ujjH2N+2(
N+1) � C
�
jjGNujjH2N+2(
N ) + "

sjjGNujj
�

� C
�
jjGNujjH2N+2(
N ) + "

sjjujj
�
:

We repeat this argument. Indeed, GNu = �; � = GN�1u. Thus, for any s > 0

jjGNujjH2N+2(
N ) � C
�
jjGN�1ujjH2N+2(
N�1) + "

sjjujj
�
:

At the last step we have, for any s > 0

jjG1ujjH2N+2(
1) � C
�
jjujjH2N+2(
0) + "

sjjujj
�
:

Thus (recalling that N is �xed and C can depend on N) we have

jju�DNujjL2(
N+1) � C"2N+2
�
jjujjH2N+2(
0) + "

sjjujj
�
:

3 Remarks

The error in deconvolution in the non-periodic case is of high accuracy, away from
boundaries, like that of the periodic case. It is an interesting analytic open question,
relevant to inverse or approximate deconvolution models of turbulence [16], [17], [18],
to establish if a similar result holds for the Stokes di¤erential �lter. It is an important
algorithmic open question to alter the van Cittert procedure near boundaries to obtain
a high order accurate reconstruction of the unknown function up to the boundary.
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