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Abstract

In this paper, we give another characterization of a non-symmetric semiclas-
sical orthogonal polynomials of class one.

1 Introduction

Our goal is to characterize the set of non-symmetric semiclassical orthogonal polyno-
mials of class one {W,,},>¢ verifying the three-term recurrence relation with 8, =
(=1)", n > 0 in a concise way as in [5, 6] via the study of the functional equation
(Pw)" 4+ Pw = 0 satisfied by its corresponding regular form w. Some information about
the shape of polynomials ® and ¥ intervening in the above functional equation are
given due to the quadratic decomposition of {W,},>0 and to a connection between
w and a suitable symmetric regular form ¢. As application, we characterize w by
giving the functional equation, the recurrence coefficient v, ,;, n > 0 and an integral
representation.

We denote by P the vector space of polynomials with coefficients in C and by P’
its dual space. The action of u € P’ on f € P is denoted as (u, f). In particular, we
denote by (u), = (u,z™), n > 0, the moments of u. For instance, for any form u,
any polynomial g and any (a,b,c) € (C\ {0}) x C?, we let Du = u', ou, gu, hau, Tpu,
(r — ¢)"lu and 6., be the forms defined in [3]:

<’U/,f> = _<u7f,>’ <Uua f> = <u,af>, <gu7f> = <U7gf>; <hau7f> = <U,huf>,

<7—b7—’f,f> = <u77——bf>’ <(Z’*C)71u,f> = <U,00f>, <5c>f> = f(c)a

where (a)(z) = f(22), (haf)(x) = flaz), (T_sf)(x) = f(x+b), (0.f)(x) = LL=L©
for all f € P. It is easy to see that [3, 4]

(fu) = fu'+ flu, feP, ueP, (1)
f(@)ou=o(f(z)u), f €P, ueP, (2)
o) =2(c(zu)), ue P, (3)
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zHau) = u — (u)odo, (z ™ u) =u, ue P (4)

A form w is said to be regular whenever there is a sequence of monic polynomials
{Wa}tnso, deg Wy, = n, n > 0 (MPS) such that (w, W,,W,,) = kn0s,m, n,m > 0 with
ky, # 0 for any n > 0. In this case, {W, }n>0 is called a monic orthogonal polynomial
sequence (MOPS) and it is characterized by the following three-term recurrence relation
1]

Wo(z) =1, Wi(z) =z — B,

Wn+2($) = (.CE - ﬁn+1)WTL+1(m) - 'Yn-i-an(x)v n > 07

2
whereﬁnz%ﬁE(Cand’ymrl:%e@\m}, n > 0.

When w is regular, {W,,},>0 is a symmetric (MOPS) if and only if §,, =0, n >0
or equivalently (w)2,+1 = 0, n > 0. Also, The form w is said to be normalized if
(w)g = 1. In this paper, we suppose that any form will be normalized.

(5)

A form w is called semiclassical when it is regular and there exist two polynomials
® (monic) and ¥, deg® =t > 0, deg¥ = p > 1 such that

(Pw)’ + Tw = 0. (6)

It’s corresponding orthogonal polynomial sequence {W,}, > is called semiclassical.
The semiclassical character is kept by shifting [3, 4, 5]. In fact, let {a™ "W, (az+b)}n>0,
a # 0, b € C; when w satisfies (6), then (h,-1 o 7_p)w fulfills

(a7t ®(az + b) (he—1 o T_p)w) + a "W (az + b)(hy—1 0 T_p)w = 0, (7)
and the recurrence coefficients of (5) are

/Bn _b ’Y’n—‘rl
a | a2

, m>0. (8)

The semiclassical form w is said to be of class s = max(p — 1,t — 2) > 0 if and only if
[3, 4, 5]
IT {(@(0) + 9 () + ((w, (6.9) + (22))) } >0, (9)
cEZp
where Zg is the set of zeros of ®. In particular, when s = 0 the form w is usually
called classical Hermite, Laguerre, Bessel and Jacobi, see [3, 4, 5].
LEMMA 1 ([3]). Let w be a symmetric semiclassical form of class s satisfying (6).
The following statements hold.

i) When s is odd then the polynomial ® is odd and ¥ is even.
ii) When s is even then the polynomial ® is even and W is odd.

Let {Wy}n>0 be a (MOPS) with respect to the form w fulfilling the three-term
recurrence relation (5) with
B,=(=1)",n>0. (10)
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Such a (MOPS) is characterized by the following quadratic decomposition [4]
Wan(2) = Pn(xz) s Wanqa(z) = (z — 1)P;:(172)a n >0, (11)

where { P, },>0 is a (MOPS) and {P}},,>0 is the sequence of monic Kernel polynomials
of K-parameter 1 associated with {P,},>o defined by [1, 2]

Pie) = 5 [Prnte) - 220

P.(z)|, n>0. (12)

Furthermore the sequences {P,},>0 and {P}},>¢ satisfy respectively the recurrence
relation (5) with

5(1)3:714‘1: Bo =1+ +1,
ﬂ5+1 = Yont2 t Yant+s T 1, Bt = Yonas + Vonsa + 1, (13)
’Yfﬂ = Y2n+1 V2n+2> ’Y:l+1 = Yon+2 Vo2n+3-

for all n > 0. Denoting by u and v the forms associated with {P,},>0 and {P}},>0
respectively, we get [4]

u=ow = o(zw), (14)
v =1 (z - 1ow. (15)

The regularity of v means that [1]
P,i1(1)#0, n>0. (16)

Moreover, the form (x — 1)w is antisymmetric, that is,
((x - 1w),, =0, n>0. (17)
Let now A be a non-zero complex number and ¥ be the form such that
Azt = (z — 1)w. (18)

According to (17)-(18) we get (27),, = 0,n > 0. Hence ¥ is a symmetric form.
Multiplying (18) by x, applying the operator o and using (15) we get Az ot = v, v.
Consequently, according to [3], the form ¥ is regular if and only if

Qn(A) =7, PiUY(0) + APE(0) #0, 1> 0, (19)

with P;(l)(ac) = (v0o Py 1)(x), n >0 and Pf(ll)(x) :=0.
LEMMA 2. There exists a non zero constant A such that the form ¥ given by (18)
is regular.

PROOF. According to the following relation [2]

*(1 * * * *
Py (@) Py () = Pryo(@) P (@) = [[ 150 #0, n>0,
v=0
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it is easy to see that
P, O]+ |PZ(0)] #£0, V>0, (20)

Let n be a fixed nonnegative integer. If P, *( 1)(0) = 0, then P*( ) # 0 from (20). So,
condition (19) is satisfied for A # 0. If P*( ) = 0, then P ( ) # 0 from (20). So,
condition (19) satisfied for A # 0. If P ( ) # 0 and P}(0) # 0, then for all A # A,

(20) is satisfied, where we have posed

n—1

e n > 0. (21)

)\n ="
In any case there exists a constant A # 0 such that (19) is fulfilled and so ¥ is a regular
form.

In what follows we assume that the (MOPS) {W,, },>¢ associated with (5),(10) is
semiclassical of class s,,. Its corresponding regular form w is then semiclassical of class
sy satisfying the functional equation (6). Multiplying the equation (6) by (z — 1)2
and on account of (1) and (18), we deduce that the form o, when it is regular, is also
semiclassical of class sy at most s,, + 2 satisfying the functional equation

(E9)" + F =0, (22)
with
E(z) =z(z — 1)®(z); F(z)=z((x—1)¥(x) —2®(x)). (23)

The next technical lemma is needed in the sequel.
LEMMA 3. For all root ¢ of ®, we have

a) (0,02E+ 0.F) = +(c — 1)? (w, 0.0 + 020) + (1 — 1) (c— 1) (2'(c) + ¥(c)) , (24)
b) E/(c) + F(c) = cle ~ 1) (¥/(c) + ¥(c)).

PROOF. Let ¢ be a root of &. Write ®(z) = (z — ¢)®.(x) with &.(z) = (0.P)(x).
From (22)-(23) we have

(02E + 0cF) (2) = 0 {E(6 — 1) (2c(8) + ¥(€)} () — 22Pe(x). (25)
Taking g(z) = (®. + ¥)(z) and f(z) = z(z — 1) in the following relation
0c(f9)(x) = g(x)(0cf)(x) + f(c)(Oeg)(x), forall f,g€P, (26)

(25) becomes
(02 + 0cF) (2) = (c = 1) {(®@e + W)(2) + ¢ (0c(@c + ) (2)} + 2(¥ = @e)(2). (27)
From the second identity in (4), relation (18) is equivalent to

9= %(wfxflw)+(1— %)50. (28)



214 A Family of Semiclassical Orthogonal Polynomials

We may also write

<§\(w —z 7 w), 0°E + QCF> = % (w,02E + 0.F — 00(0°E + 0.F)). (29)

Taking f(z) = (0.(®. + ¥)) (2) in the following
cho(0.f)=0.f —b0of, feP, ceC, (30)
and applying the operator  to (27), we obtain
(00(02E + 0.F)) (z) = (¥ — @c)(@) + (¢ — 1) (0c(Pe + V) (2). (31)
This gives
(02E+0.F)(z)— (00 (02E + 0.F)) (z) = (c—1)? (0(P, + ¥)) () +(z+c—2)T—. (32)

Thus (29) becomes

1 1
<)\(w - m_lw)u egE + 96F> = X(C - 1)2 <wv 9C(I>C + 90\11> ) (33)
since (w, ¥) = 0 and (w,2¥(z) — &(x)) = 0 from (6). Next, by a simple calculation,
we have

<(1 — %)50,0§E + HCF> =(1- %)(c —1)(®e + P)(c). (34)

Adding (33) and (34) we obtain the first relation in (24). From (22)-(23), we have
E'(c) = ¢(c —1)®'(c) and F(c) = ¢(c — 1)T(c), hence the second relation in (24) holds.

Let us recall the following result about the class sy of the form .

THEOREM 1. The form ¥ is semiclassical and its class depends only on the zero
x =1 for any A # A\, n > —1 where \,,, n > 0 is given by (21) and

(w,00F + 03®) + @'(0) + ¥(0)

A= @'(0) + w(0)

(35)
Moreover, the semiclassical form 9 is of class sy satisfying the functional equation
~ N\~
(Eﬂ) +F9 =0, (36)

such that
a) if ®(1) # 0, then sy = sy + 2,

E(z) =z(z — 1)®(z) and F(z) =z ((z — 1)¥(z) — 20(z));
b) if (1) =0 and ¥(1) # 0, then sy = s, + 1,

E(z) = 2®(z) and F(z) =z (¥(z) — (6,9)(z));
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c)if (1) =0 and ¥(1) =0, then sy = Sy,

E(z) = z(0,9)(x) and F(z)=z(0,%)(z).

PROOF. By our assumption, on account of Lemma 2, and by (22)-(23), the form
¥ is regular and so is semiclassical of class sy < s, + 2. Let ¢ be a root of E such
that ¢ # 1. According to (23) we get ¢®(c) = 0. If ¢ # 0, then ¢ is a root of . We
suppose E'(c) + F(c) = 0. From (24) we obtain ®'(c) +¥(c) = 0 and (0, 0°E + 0. F) =
F(e—=1)*{w, 0,V + 93¢> # 0, because w is semiclassical and so satisfies (9). If c =0
and ®(0) # 0, then E'(0) + F(0) = —®(0) # 0 from (23). If ¢ = 0 and ®(0) = 0,
then E'(0) + F(0) = 0. We are led to the following: When ®'(0) + ¥(0) = 0, we
get (0,00E+ 00 F) = L (w, 000 + 05®@) # 0 from (24a). When &'(0) + ¥(0) # 0 and
because A # A_1, then according to (24a) with ¢ = 0, we obtain <19, 9(2)E + 90F> # 0.
Therefore equation (6) is not simplified by 2 — ¢ for ¢ # 1. Next, from (23) we have
E'(1)+F(1) =—-2(1).

a) If ®(1) # 0, then E'(1) + F(1) # 0 and the equation (22) cannot be simplified.
This means that

sy = max(degE — 2,degF — 1) = max(deg ® — 2,deg ¥ — 1) = s,, + 2.

b) If ®(1) = 0, then E'(1) + F(1) = 0 and (9, 07E + 6;F) = 0 from (24). Therefore
(22) can be simplified by 2 — 1. After simplification, it becomes (Eﬂ)/ +F9 = 0,
with E(z) = 2®(z) and F(z) = x (¥(z) — (01P)(z)) . We have E'(1) + F(1) = ¥(1).
When \I/(~1) # 0, thE above functional equation is not simplified. Consequently, sy =
max(degE — 2,degF — 1) = s, + 1.

¢) If ®(1) = 0 and ¥(1) = 0, then E'(1) + F(1) = ¥(1) = 0. By virtue of (18)
and (6) we get <19,9%E + 91ﬁ> = $(w, V) = 0. Therefore (34) is simplified by = — 1,
and ¢ fulfils (E'z?)l + F9 = 0, where E(z) = 2(6,®)(z) and ?(9:) = z(0,9)(z). If 1
is a root of 619, then ®'(1) + ¥(1) = 0. Assuming that E’(1) + F(1) = 0, a simple
calculation gives <19, Gfﬁ + 91§> =1+ (w,0, ¥ + 9§@> # 0 since w is a semiclassical of
class 1 satisfying (9). Hence the functional equation (Eﬁ), +F9 = 01is not simplified
and sy = max(degE — 2,degF — 1) = s,,.

2 Main Results

In the sequel we deal with the semiclassical sequence {W,,},>¢ of class one satisfying
(10). Its corresponding regular form w is then semiclassical of class s,, = 1 fulfilling
the functional equation (6) with 0 < deg® <3 and 1 < deg¥ < 2.
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2.1 Characterization of the Polynomials ¢ and ¥

We can usually decompose the polynomials ® and ¥ through their odd and even parts.
Set

O(z) = ¢(2*) + w(ﬁ)» U(z) = P(2?) + aw(

(012)(z) = ¢1(2%) + 201 (2?) and  (01¥)(z) = 9y (2°

PROPOSITION 1. Let w be a semiclassical form of class one satisfying (6) and
{Wy}n>0 be its corresponding MOPS fulfilling (10).

a) If ®(1) #0, then ¢(z) = p(z) = % (zw(z) — Y(x)).

b) If &(1) =0 and ¥(1) # 0, then ¢(z) =0 and ¢, (x) = w(x).

c) If (1) =0 and ¥(1) =0, then ¢(x) + ¢(z) =0 and ¢(z) + zw(z) = 0.

PROOF. Set

2?),
)+ awn (@), 5D

E(z) = E°(2?) + 2E°(2?);  F(z) = F¢(2?) + 2F°(2?). (38)

a) ®(1) # 0. According to (37)-(38) and from Theorem 1., we obtain E¢(z) = z(¢—
0)(@), (@) = 2p(z) — B(x), F*(z) = 2t —w—20)(2), F(2) = 2w() — () —26(2).
On account of Lemma 1. and the fact that 9 is of odd class, we get E¢ = F° = 0. This
leads to the result a).

b) ®(1) = 0 and ¥(1) # 0. Similar to a), we have E¢(z) = zp(z), E°(z) =
o(x), Fé(z) = z(w — ¢, )(z) and F°(z) = (¢ — ¢,) (). The form o is of odd class, then
E¢ = F° = 0. Hence the conclusion. N N

c) ®(1) = 0 and ¥(1) = 0. In this case we have E¢(z) = z¢,(z), E°(z) =
¢, (z), Fo(z) = aw: (), Fo(z) = 1, (). Since ¥ is of odd class, E¢ = F° = 0. Therefore
¢; = 0 and ¢; = 0. Moreover we can write ®(z) = (z — 1)(01®)(x) = (z — 1)¢,(z?)
and ¥(z) = (z — 1)zwi(2?). So ¢ = —¢;, p = —¢;, w = —w; and ¥ = zw;. This gives
the desired result.

THEOREM 2. Let w be a semiclassical form of class one satisfying (6) and {W,, },>0
be its corresponding (MOPS) fulfilling (10). The functional equation (6) has only one
solution given by

d(x) = z® —x, U(z) = ar’ +x4+¢, a#0, (w)o = (w)1 =1, (39)
with
a+c+1#0; |a+2|/+ja+c+3]#0 and |a+2/+|c—3|#0. (40)

PROOF. When deg® < 2 and degW¥ = 2, we consider a # 0, b and ¢ as three
complex numbers such that ¥(z) = ax? + bx + c. From Proposition 1, we have the
following.

i) If ®(1) # 0, then ¢(x) = ¢(z), and so ®(x) = (x + 1)p(2?) from (37). Because ®
is a monic polynomial of degree at most two, then necessarily ¢(z) = 1. In addition,
we have zw(z) — ¢(x) = 2. This implies that a = b and ¢ = —2. Thus ®(z) =z + 1
and ¥(z) = az? + az — 2, a # 0. According to equation (6), we have (w,¥(z)) =
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(w,z¥(x) — ®(x)) = 0. Then (w,az? + ax — 2) = (w,az> + ax? — 3z — 1) = 0. It is
equivalent to
a(y; +2)—2=0 and a(y; +1)—2=0, (41)

since (w,x) = 1 and (w, 2®) = (w,x?) = v, + 1. It is easy to see from (41) that a = 0,
that is a contradiction with deg ¥ = 2.

ii) If ®(1) = 0 and ¥(1) # 0, then ¢(z) = 0. Therefore ®(x) = x, because P is
monic and deg ® < 2. This contradicts ®(1) = 0.

iii) If ®(1) = 0 and ¥(1) = 0, then ®(x) = 2 — 1 and ¥(z) = a(2® — ) with
a # 0. Writing (w, ¥(z)) = (w,a(z? — x)) = 0, then ay; = 0 and so v; = 0. It is a
contradiction, by virtue of the regularity of the form w.

When deg® = 3, we obtain deg¢ < 1 and degy = 1 from (37). According to
Proposition 1, we have the following.

1) If ®(1) # 0, then ¢(z) = ¢(z) and ¥ (z) = —2¢(x)+zw(z). We obtain ®(x) = (z+
1)e(2?) and ¥(z) = (22 +2)w(2?)—2¢(2?). Therefore w is a constant polynomial and ¢
is a monic polynomial of degree one since deg ¥ < 2 and deg ® = 3. Denoting by p(z) =
z+d and w(z) = e. We write ®(z) = (x+1)(2%+d) and ¥(z) = (e —2)2? +ex —2d. As
above, we have (w, ¥) = (w,2¥(z) — ®(z)) = 0. It follows (e —2)(y; +1)+e—2d =0
and (e —2)(y; +1) —2d = 0. Hence e = 0 and y; +d + 1 = 0. Again, according to
equation (6), we have ((®(z)w)’ + ¥(z)w,x?) = 0, then (w,z%(x? + d)) = 0. Since
x? = Wa(z) + v, + 1, we then obtain (w,(Wa(z) + v, + 1)Wa(z)) = 0. This gives
(w, Wi(z)) = 0. It is a contradiction with the orthogonality of {W,,},>0.

ii) If (1) = 0 and ¥(1) = 0, then ¢(x) = —¢(z) and ¢(z) = —aw(z). Therefore
U(z) = (v — 2?)y(2?), and on account of 1 < deg¥ < 2, degt = 0. Denoting by
¥(z) = a1, where a; € C\ {0}, since (w, ¥) = (w,a;(x — z?)) = 0, we have a1y, = 0.
It is a contradiction.

i) If ®(1) = 0 and ¥(1) # 0, then ¢(x) = 0 and w(x) = ¢;(z). So ®(z) = x (x> —1)
and ¥(z) = az? +x+c. If a=0, then ¢+ 1 = 0, since (w, ¥) = 0. Thus ¥(z) =2 —1
which contradicts U(1) # 0. Necessarily a # 0. Moreover the form w is of class one,
we shall have the condition (9) with Z¢ = {—1,0, 1}, which leads to relation (40).

2.2 The Computation of v,

We will study the form w given in Theorem 2. Denoting by a = %(c —1)and g =
—%(a + ¢+ 3). The form w fulfills the following equation

2z = Dw) + (=2 +B+2)z> +z+2a+1)w =0,
(o= (o = ) ) (2

where
la+58+1+]a|#0, B+1#0, |la+B8+1+]|8#0, a+F+2#0. (43)

Applying the operator ¢ in (42) and on account of (2) and (3), we get

(2 —2)u) + (—(@+ B+ 2z +a+D)u=0, (u)y=1. (44)
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Multiplying (44) by = — 1, we obtain the functional equation satisfied by the form v
((x2—m)v)/—l—(—(a+ﬁ+3)x+a+2)v, (v)o = 1. (45)

Therefore the forms u and v are classical. Moreover from a suitable shifting, we obtain
u:(T%oh%)j(a,ﬁ); v:(T%oh%)J(aﬁ—kl). (46)

Where J(«, 8) is the Jacobi form of parameters o and (3 satisfying the following func-
tional equation

((@* = 1T (@.8) + ((a+f+ 2z +a—F)T(@f) =0, (J(@h),=1

It is regular if and only if « # —n, § # —n, a+ [ # —n, n > 1. Moreover, the
coeflicients of its corresponding orthogonal polynomials {P,(La’ﬁ )}nzo are given by [1]

/3(0‘7ﬂ) _ o?—g? n>0
n 2n+a+B)(2n+a+p+2) = (47)
(@,8) _ 4__(nt1)(ntatp+l)(ntatl)(ntf+1) n>0

Tn+l” = *@ntatpiD) (@ntatfi2)@ntatipts) =Y

PROPOSITION 2. Let w be the form of class one satisfying (42). The coefficients
of its corresponding (MOPS) {W,, },>¢ are given by

_ (n+a+pB+1)(n+5+1) n>0

Yont1 = 2n+a+B+1)(2n+a+p+2)° =Y (48)
_ TG D (et -0

Yon+2 = T @ntatfr2)@ntatpt3) L= Y

PROOF. Let { P, },>0 be a (MOPS) with respect to the regular form v and {P;},,>0
be the (MOPS) with respect to the regular form v. From (46), we have

P,(z) =27"P>A (2 — 1), Pf(x)=2""PAH) (22— 1), n>0. (49)
By comparing with (13), (47) and using (8) we get

(n+1)(n+a+p+1)(n+a+1)(n+8+1)

Yont+1V2n+2 = (2n+a+B+1)(2n+ta+B+2)2(2n+a+B+3)’ n =0, (50)
— (4 D)(n+a+B+2)(ntat1)(n+B+2) >0
Ton+272n43 = @ntatB+2)@ntathE3)Z(2ntatB+4)’ =
This gives
Yonts  (m+a+B+2)n+B+2)2n+a+B+1)2n+a+ S+ 2) "> 0

Yony1 (Fa+B+Dn+B+1)2n+a+B+3)2n+a+F+4)" T

By virtue of (50) and from a simple calculation we deduce (48).

REMARK 1. In particular, when o = 27! and 3 = —27!, we obtain the so-called
second-order self-associated orthogonal sequence, see [4].
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2.3 Integral Representation

Regarding the integral representation of the form w given by (42), we start with the
representation of the form u. For ®(«) > —1 and R(8) > —1, we have for all f € P [1]

<J(avﬁ),f($;l)>

1 T(a+8+2) [ a z+1
- wwwﬂﬂa+nﬂﬁ+n/¥@+w)u_xwf( Q)dm

(u, f)

Using the substitution ¢t = %, we get

Mo+ 6+2)
(a+1I(B+1

1

(w.1) = o [ ea—o s s ep. (51)
0

Next, we decompose the polynomial f as follows: f(z) = fi(2?)+ (x — 1) f2(2?). From

the fact that (x — 1)w is antisymmetric, we obtain (w, f) = (u, f1). Using again the

substitution ¢ = y? in (51), we obtain

T'(a+8+2)
INCESNGCES

(w, f) =2 ) / U= ) () dy.

Since for R(a) > —3% and R(8) > —1, fil yly 2t (1 -y fi(y?)dy = 0, the above
representation may be written as follows

T(a+5+2) /1
(@t LB+ 1)

(w.f) =g W +y) ly P Q=D fyP)dy.

-1
Moreover, we have
1
/(f+yHyW“W1—fW@—Uh@5@:O
-1

Consequently, we get an integral representation of the form w for all f € P, Ra >

1
PR %ﬁ > _17

W +y) Ly P 1=y  f(y)dy.

_ D(a+p+2) !
<wj%‘na+nn5+n/¥
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