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Abstract
Our aim in this paper is to investigate the convergence of solutions of the

nonlinear di¤erence equation xn+1 = xnxn�1 � 1; n = 1; 2; : : :, where the initial
conditions x�1; x0 are in the interval (�1; 0). We show that every solution of this
equation converges to the unique negative equilibrium �x = (1�

p
5)=2.

1 Introduction

Recently there has been some interest in the study of nonlinear and rational di¤er-
ence equations, see, e.g. [3�8]. The results of these equations serve as prototypes in
the development of the basic theory of the nonlinear di¤erence equations. Also the
techniques and results about these equations are useful to analyze the equations in the
mathematical models of biological systems, economics and other applications, see, for
instance, [9�11].
In this paper we consider the second-order di¤erence equation

xn+1 = xnxn�1 � 1; n = 1; 2; : : : ; (1)

where the initial conditions x�1; x0 are in the interval (�1; 0).
The long-term behavior of solutions of (1) was systematically investigated in [1]. In

particular, the properties of the boundedness, periodic behaviors of solutions, and the
dependence on initial conditions are examined. A question is also raised:
Question ([1]). If �1 < x�1; x0 < 0, show whether or not every solution fxng1n=�1

of (1) converges to the negative equilibrium �x = (1�
p
5)=2.

Our goal in this paper is to �nd the answer to this question. Before stating our
result, we list a lemma which is useful to prove our theorem.
LEMMA 1.1 ([1]). If �1 < x�1; x0 < 0, then �1 < xn < 0 for all n � �1.
We claim that (1) is equivalent to the following di¤erence equation

yn+1 = 1� ynyn�1; (2)

where the initial conditions satisfy that y�1 = �x�1; y0 = �x0. Indeed, it is easy
to check that yn = �xn and the interval (0; 1) is invariant. Now we only need to
investigate the convergence of solutions of (2), with the initial conditions y�1; y0 in the
interval (0; 1).
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2 Convergence of Solutions of (2)

Motivated by the methods used in [2, 6�8], in this section, we verify the convergence
of solutions of (2). We have the following result.

THEOREM 2.1. Every solution of (2) with initial conditions in (0; 1) converges to
the positive equilibrium �y = (

p
5� 1)=2.

PROOF. Let

m0 = min fy�1; y0; y1g ; M0 = max fy�1; y0; y1g : (3)

Then we shall show that m0 � �y, and M0 � �y. For the former case, suppose to
the contrary that m0 > �y. Then y1 = 1 � y0y�1 � 1 �m2

0 < 1 � �y2 = �y < m0, which
contradicts the fact that y1 � m0. Similarly, we can also get M0 � �y.
Now we claim that m0 � y2 � M0. Firstly, to prove m0 � y2, we divide it into

three cases:
Case 1. If m0 = y�1, then

y2 �m0 = y2 � y�1 = 1� y1y0 � y�1 = 1� y0(1� y0y�1)� y�1
= (1� y0)(1� y�1 � y0y�1) = (1� y0)(y1 � y�1) = (1� y0)(y1 �m0)

� 0: (4)

Case 2. If m0 = y0, then we have that y0 � y�1, y0 � y1 = 1� y0y�1, therefore,

y0 � min
�
y�1;

1

1 + y�1

�
; (5)

y2 �m0 = y2 � y0 = 1� 2y0 + y�1y20 : (6)

If y�1 � �1+
p
5

2 = y, then y�1 � 1
1+y�1

. Therefore, (5) is equivalent to

y0 � y�1 � �y:

Let
g(y0) = 1� 2y0 + y�1y20 ; (7)

then g(y0) is a quadratic function where y�1 is regarded as a parameter. Since its
symmetry axis is 2

2y�1
= 1

y�1
> 1 and the condition (5) holds, we can obtain

g(y0) � g(y�1) = 1� 2y�1 + y3�1: (8)

Set f(y) = 1� 2y + y3 and compute its derivative

f 0(y) = �2 + 3y2;

for any y 2 [y�1; �y], we have

f 0(y) = �2 + 3y2 � �2 + 3�y2 = �2 + 3
 p

5� 1
2

!2
=
5� 3

p
5

2
< 0;
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which means that f(y) is decreasing on the interval [y�1; �y], thus

g(y0) � g(y�1) � f(�y) = 1� 2
p
5� 1
2

+

 p
5� 1
2

!3
= 0: (9)

And by (6) and (7), we have that y2 � m0.
If y�1 � �1+

p
5

2 = �y, then y�1 � 1
1+y�1

. In this case, (5) is equivalent to

y0 �
1

1 + y�1
� 1

1 + �y
= �y: (10)

Similarly, we can also have that y2 � m0. Therefore, if m0 = y0, then y2 � m0.
Case 3. If m0 = y1,

y2 �m0 = y2 � y1 = 1� y1y0 � (1� y0y�1) = y0(y�1 � y1) � 0: (11)

Hence, we have proved that m0 � y2 .
Then, to prove y2 �M0, we also divide it into three cases in a similar way as above.
Case 1. If M0 = y�1, then

y2 �M0 = y2 � y�1 = 1� y1y0 � y�1 = 1� y0(1� y0y�1)� y�1
= (1� y0)(1� y�1 � y0y�1) = (1� y0)(y1 � y�1) = (1� y0)(y1 �M0)

� 0: (12)

Case 2. If M0 = y0, we have that y�1 � y0, and y1 = 1� y0y�1 � y0, then

y0 � max
�
y�1;

1

1 + y�1

�
: (13)

Note that �y is the only positive solution of equation y�1 = 1
1+y�1

. Since the function

f1(x) = x is increasing and f2(x) = 1
1+x is decreasing on the interval (0; 1), we get that

max

�
y�1;

1

1 + y�1

�
� �y: (14)

Thus, �y � y0 < 1. If y�1 � �y, then using the property of the quadratic equation, we
have

y2 �M0 = y2 � y0 = 1� 2y0 + y�1y20 � 1� 2y0 + �yy20 � 1� 2�y + �y3 = 0: (15)

If y�1 � �y, then y0 � y�1 � �y. Let

g(y0) = y2 �M0 = 1� 2y0 + y�1y20 ; (16)

where y�1 is a parameter.
The symmetry axis of g(y0) is y0 = 1

y�1
> 1: For �y � y0 � 1, we have that

g(y0) � 1� 2�y + y�1�y2 = y�1(
1� 2�y
y�1

+ �y2) � y�1(
1� 2�y
�y

+ �y2) = 0: (17)
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Case 3. If M0 = y1,

y2 �M0 = y2 � y1 = 1� y1y0 � (1� y0y�1) = y0(y�1 � y1) � 0: (18)

Clearly, for any of the above three cases, we all have that y2 � M0. Therefore,we
have proved that m0 � y2 �M0.
Let

mi = min fyi�1; yi; yi+1g ;Mi = max fyi�1; yi; yi+1g ; (19)

for i = 1; 2; � � � .
From the above proof, one can observe that

m0 � m1 � � � � � mi � � � � � � � � �Mi � � � � �M1 �M0; (20)

and
mi � yi+2 �Mi; (21)

for i = 0; 1; 2; � � � .
Since fmig1i=1 is a monotonically increasing sequence with an upper bound, it

converges to some real number. Similarly, the sequence fMig1i=1 converges, for it
is monotonically decreasing and has a lower bound.
Let

m = lim
i 1

mi; M = lim
i 1

Mi: (22)

We claim that
m =M: (23)

Suppose not, then there must exist a period-two or period-three solution of (2). When
(2) has a period-two solution, we have that(

m = 1�Mm
M = 1�mM

(24)

When (2) has a period-three solution, then there must be some c with m � c � M ,
thus we have that 8><>:

m = 1�Mc
c = 1�Mm
M = 1�mc

(25)

For the two cases, we both have that m =M = (
p
5� 1)=2.

Therefore, with the initial conditions y�1; y0 in the interval (0; 1), every solution
fyig1i=�1 of (2) converges to y. This completes the proof of the theorem.
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