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Abstract

In 2002, Kotakemori et al. [H. Kotakemori, K. Harada, M. Morimoto and
H. Niki, A comparison theorem for the iterative method with the preconditioner
I + Smax, J. Comput. Appl. Math., 145(2002), 373�378] considered the modi�ed
Gauss-Seidel method for irreducibly diagonally dominant Z-matrices with the
preconditioner P = I + Smax. In this paper, we consider a modi�ed Gauss-Seidel
method for solving the linear systems, which is a generalization of the method
considered by Kotakemori et al., and prove its convergence when the coe¢ cient
matrix is an H-matrix. Numerical examples are given to illustrate our theoretical
analysis.

1 Introduction

Consider the following linear system

Ax = b; (1)

where A = (ai;j) is an n� n nonsingular matrix, x and b are n-dimensional vectors. If
A has a splitting of the form A = M �N , where M is nonsingular, then the splitting
iterative method for solving (1) can be expressed as

xi+1 =M
�1Nxi +M

�1b; i = 0; 1; 2; ::::

It is well known that the above iterative scheme is convergent if and only if �(M�1N) <
1, where �(M�1N) denotes the spectral radius of the iterative matrix M�1N . The
smaller is �(M�1N), the faster is the convergence. For improving the convergent
rate of corresponding iterative method, preconditioning techniques are used [2]. In
particular, we consider the following equivalent left preconditioned linear system of (1)

PAx = Pb; (2)
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where P , called the preconditioner, is nonsingular. The corresponding iterative method
for solving (2) is given by

xi+1 =M
�1
p Npxi +M

�1
p Pb; i = 0; 1; 2; :::; (3)

based on the splitting PA =Mp �Np, where Mp is nonsingular.

Many left preconditioner P were proposed, see [5, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 19] and the references therein. In 2002, Kotakemori et al. [11] considered the
preconditioner PSmax = I + Smax, where

Smax = (s
m
i;j) =

�
�ai;ki ; i = 1; :::; n� 1; j > i;
0; otherwise;

with ki = minfjj maxj jai;j j; i < ng: As for the discussion of the preconditioner PSmax =
I + Smax, we refer to [9, 11, 12, 15, 19]. It is reported that the modi�ed Gauss-Seidel
method with the preconditioner PSmax is superior to the classical Gauss-Seidel method
under some conditions when A is an irreducibly diagonally dominant Z-matrices.

In this paper, we consider the generalized preconditioner PSmax(�) = I + Smax(�),
where

Smax(�) = (s
m
i;j) =

�
��iai;ki ; i = 1; :::; n� 1; j > i;

0; otherwise;

with ki = minfjj maxj jai;j j; i < ng, �i(i = 1; :::; n � 1) are positive real numbers.
When �i = 1(i = 1; 2; :::; n � 1), the preconditioner PSmax(�) reduces to the one con-
sidered in [11]. The basic purpose of the present paper is to prove the convergence of
the modi�ed Gauss-Seidel method with the preconditioner PSmax(�) for solving (1) for
the case that the coe¢ cient matrix is an H-matrix.

Without loss of generality, we always assume that A has a splitting of the form
A = I�L�U , where I is the identity matrix, �L and �U are strictly lower-triangular
and strictly upper-triangular parts of A, respectively.

The remainder of the present paper is organized as follows. Next section is the
preliminaries. The convergence of the modi�ed Gauss-Seidel method are studied for
H-matrix in Section 3. In Section 4, numerical examples are given to illustrate our
theoretical analysis.

2 Preliminaries

In this section, we give some of the notations, de�nitions and lemmas which will be
used in what follows.

A vector x = (x1; x2; :::; xn)T is called nonnegative (positive) and denoted by x � 0
(x > 0), if xi � 0 (xi > 0) for all i. Similarly, a matrix A = (ai;j) is called nonnegative
(positive) and denoted by A � 0 (A > 0), if ai;j � 0 (ai;j > 0) for all i; j. The absolute
value of a matrix A is denoted by jAj = (jai;j j). The comparison matrix of A is de�ned
as hAi = (~ai;j), where ~ai;j satis�es

~ai;j =

�
jai;j j; i = j;
�jai;j j; i 6= j:
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DEFINITION 1 ([1, 18]). A matrix A is called an M -matrix if A = sI �B, B � 0
and s > �(B).

DEFINITION 2 ([1, 18]). A matrix A is an H-matrix if its comparison matrix hAi
is an M -matrix.

DEFINITION 3 ([4]). The splitting A =M�N is called an H-splitting if hMi�jN j
is an M -matrix.

LEMMA 1 ([4]). Let A =M �N be a splitting. If it is an H-splitting, then A and
M are H-matrices and �(M�1N) � �(hMi�1jN j) < 1.
LEMMA 2 ([3]). Let A have nonpositive o¤-diagonal entries. Then a real matrix

A is an M -matrix if and only if there exists some vector u = (u1; u2; :::; un)T > 0 such
that Au > 0.

3 Convergence Theorem

Assume that ai;ki 6= 0, consider the preconditioner PSmax(�), then we have

A� = PSmax(�)A = I �D � L� E � (U + Smax(�) + F + Smax(�)U);

where D; E and F are the diagonal, strictly lower triangular and strictly upper trian-
gular parts of Smax(�)L, respectively. Hence, if �iai;kiaki;i 6= 1(i = 1; 2; :::; n�1), then
(I �D � L� E)�1 exists and the Gauss-Seidel iteration matrix for A� is de�ned as

T = (I �D � L� E)�1(U + Smax(�) + F + Smax(�)U):

THEOREM 1. Let A be an H-matrix with unit diagonal elements, A� =M��N�
with M� = I � D � L � E and N� = U + Smax(�) + F + Smax(�)U . Let u =
(u1; u2; :::; un)

T be a positive vector such that hAiu > 0. Assume that ai;ki 6= 0 for
i = 1; 2; :::; n� 1, then

�i =
ui �

Pi�1
j=1 jai;j juj �

Pn
j=i+1;j 6=ki jai;j juj + jai;ki juki

jai;ki j
Pn

j=1 jaki;j juj

are well de�ned and �i > 1 for i = 1; 2; :::; n� 1.
PROOF. As hAi is an M -matrix, from Lemma 2, there exists a positive vector

u = (u1; u2; :::; un)
T satisfy hAiu > 0. From the de�nition of hAi, we get that

ui �
nX

j=1;j 6=i
jai;j juj > 0 for i = 1; 2; :::; n� 1: (4)

Therefore, we have

ui �
i�1X
j=1

jai;j juj �
nX

j=i+1;j 6=ki

jai;j juj + jai;ki juki � jai;ki j
nX
j=1

jaki;j juj

= ui �
nX

j=1;j 6=i
jai;j juj + jai;ki j(uki �

nX
j=1;j 6=ki

jaki;j juj)
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It follows from (4) that ui �
Pn

j=1;j 6=i jai;j juj > 0: Noting that ki < n, again from (4),
the inequality uki �

Pn
j=1;j 6=ki jaki;j juj > 0 holds. Hence, for i = 1; 2; :::; n� 1,

ui �
i�1X
j=1

jai;j juj �
nX

j=i+1;j 6=ki

jai;j juj + jai;ki juki � jai;ki j
nX
j=1

jaki;j juj > 0:

Under the assumptions, we further obtain that

ui�
i�1X
j=1

jai;j juj�
nX

j=i+1;j 6=ki

jai;j juj+jai;ki juki > jai;ki j
nX
j=1

jaki;j juj > 0 for i = 1; 2; :::; n�1:

Hence,

�i =
ui �

Pi�1
j=1 jai;j juj �

Pn
j=i+1;j 6=ki jai;j juj + jai;ki juki

jai;ki j
Pn

j=1 jaki;j juj

are well de�ned and �i > 1 for i = 1; 2; :::; n� 1.

REMARK: It should be remarked that �i (i = 1; 2; :::; n�1) in Theorem 1 depends
on the positive vector u. There are many such vectors u satisfying u > 0, how to
choose applicable u is very important for practical computation. In general, we can let
u = (1; 1; :::; 1)T when A is the strictly diagonally dominant H-matrix, while when A
is not strictly diagonally dominant, it follows from [7] that the elements mi;j of hAi�1
satis�es

nX
j=1

mi;j � 1; i = 1; 2; :::; n;

hence we can let ui =
Pn

j=1mi;j for i = 1; 2; :::; n and u = (u1; u2; :::; un)T . However,
�nding out �i (i = 1; 2; :::; n� 1) which are independent of the vector u is still an open
problem need further study.

Now we are in the position to establish the convergence of the modi�ed Gauss-Seidel
method with the preconditioner PSmax(�) = I + Smax(�) for H-matrices.

THEOREM 2. Let A be an H-matrix with unit diagonal elements. If �i, M� and
N� are de�ned as in Theorem 1, then for 0 � �i < �i; i = 1; 2; :::; n� 1, the splitting
A� =M� �N� is an H-splitting and �(M�1

� N�) < 1.

PROOF. In order to prove the splitting A� =M� �N� is an H-splitting, we only
need to show that hM�i � jN�j is an M -matrix.
Let [(hM�i � jN�j)u]i be the i-th element in the vector (hM�i � jN�j)u for i =
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1; 2; :::; n� 1, where u = (u1; u2; :::; un)T is a positive vector. Then we have

[(hM�i � jN�j)u]i = j1� �iai;kiaki;ijui �
nX

j=1;j 6=i
jai;j � �iai;kiaki;j juj

� ui � �ijai;kiaki;ijui �
i�1X
j=1

jai;j juj � �i
i�1X
j=1

jai;kiaki;j juj

�
nX

j=i+1;j 6=ki

jai;j juj � j1� �ijjai;ki juki

��i
nX

j=i+1;j 6=ki

jai;kiaki;j juj ; (5)

and

[(hM�i � jN�j)u]n = un �
X

j=1;j 6=i
jan;j juj > 0: (6)

If 0 � �i � 1 (i = 1; 2; :::; n� 1), then we have

[(hM�i � jN�j)u]i � ui � �ijai;kiaki;ijui �
i�1X
j=1

jai;j juj � �i
i�1X
j=1

jai;kiaki;j juj

�
nX

j=i+1;j 6=ki

jai;j juj � (1� �i)jai;ki juki

��i
nX

j=i+1;j 6=ki

jai;kiaki;j juj

= ui �
nX

j=1;j 6=i
jai;j juj + �ijai;ki juki � �ijai;ki j

nX
j=1;j 6=ki

jaki;j juj

= (ui �
nX

j=1;j 6=i
jai;j juj) + �ijai;ki j(uki �

nX
j=1;j 6=ki

jaki;j juj):

Since ui �
Pn

j=1;j 6=i jai;j juj > 0 and uki �
Pn

j=1;j 6=ki jaki;j juj > 0, one get that

[(hM�i � jN�j)u]i > 0 for i = 1; 2; :::; n� 1: (7)
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If 1 < �i < �i (i = 1; 2; :::; n� 1), from (5) and the de�nition of �i, we have

[(hM�i � jN�j)u]i � ui � �ijai;kiaki;ijui �
i�1X
j=1

jai;j juj � �i
i�1X
j=1

jai;kiaki;j juj

�
nX

j=i+1;j 6=ki

jai;j juj � (�i � 1)jai;ki juki

��i
nX

j=i+1;j 6=ki

jai;kiaki;j juj

= ui �
i�1X
j=1

jai;j juj �
nX

j=i+1;j 6=ki

jai;j juj

+jai;ki juki � �ijai;ki j
nX
j=1

jaki;j juj

> 0: (8)

Therefore, it follows from (5)�(8) that

(hM�i � jN�j)u > 0 for 0 � �i < �i:

By Lemma 2, we know that hM�i � jN�j is an M -matrix for 0 � �i < �i (i =
1; 2; :::; n�1). From De�nition 3, A� =M��N� is an H-splitting for 0 � �i < �i (i =
1; 2; :::; n�1). Hence, Lemma 1 yields �(M�1

� N�) < 1 for 0 � �i < �i (i = 1; 2; :::; n�1),
the proof is completed.
REMARK: From Theorem 2, we can see that the modi�ed Gauss-Seidel method is

convergent for all 0 � �i < �i; i = 1; 2; :::; n � 1 with the preconditioner PSmax(�)
when the coe¢ cient matrix A of (1) is an H-matrix. The convergence condition when
A is an H-matrix is much weaker than the one, studied in [11, 12, 19], when A is an
M -matrix.

4 Examples

In this section, we use two examples to verify our theoretical analysis in Section 3.
It is well known that the Toeplitz matrices arise in many applications, such as

solutions to di¤erential and integral equations, spline functions, and problems and
methods in physics, mathematics, statistics, and signal processing [6]. Therefore, the
�rst example, we consider the case that the coe¢ cient matrix of (1) is a Toeplitz matrix.
EXAMPLE 1. Let the coe¢ cient matrix of (1) be a symmetric Toeplitz matrix as

A =

2666664
a b c � � � b
b a b � � � c
c b a � � � b
...

...
...

. . .
...

b c b � � � a

3777775
n�n

;
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where a = 1, b = 1=n and c = 1=(n� 2). It is clear that A is an H-matrix.
The spectral radii of modi�ed Gauss-Seidel iteration matrix with various values of

�i for i = 1; :::; n� 1 and n are listed in Table 1

Table 1: The spectral radii of MGS iteration matrix for Example 1

n = 90 n = 120 n = 180 n = 210 n = 300
�i = 0:1 0:2175 0:2171 0:2168 0:2167 0:2165
�i = 0:5 0:2123 0:2133 0:2142 0:2145 0:2150
�i = 0:8 0:2097 0:2114 0:2130 0:2134 0:2142
�i = 1:0 0:2081 0:2101 0:2121 0:2127 0:2137
�i = 1:2 0:2064 0:2089 0:2113 0:2120 0:2132
�i = 1:5 0:2039 0:2070 0:2101 0:2109 0:2125

EXAMPLE 2. When the central di¤erence scheme on a uniform grid with N �N
interior nodes (N2 = n) is applied to the discretization of the two-dimension convection-
di¤usion equation

�4u+ @u
@x

+ 2
@u

@y
= f

in the unit squire 
 with Dirichlet boundary conditions, we obtain a system of linear
equations (1) with the coe¢ cient matrix

A = I 
 P +Q
 I;

where 
 denotes the Kronecker product,

P = tridiag

�
�2 + h

8
; 1; � 2� h

8

�
and Q = tridiag

�
�1 + h

4
; 0; � 1� h

8

�
are N �N tridiagonal matrices, and the step size is h = 1=N .

It is clear that the matrix A is an M -matrix, see for example [19], so it is an
H-matrix. We list the spectral radii of modi�ed Gauss-Seidel iteration matrix with
various values of �i for i = 1; :::; n� 1 and n in Table 2

Table 2: The spectral radii of MGS iteration matrix for Example 2

n = 16 n = 64 n = 81 n = 100 n = 256
�i = 0:1 0:6159 0:8687 0:8927 0:9108 0:9621
�i = 0:8 0:5020 0:8182 0:8507 0:8754 0:9464
�i = 1:0 0:4582 0:7993 0:8350 0:8621 0:9405
�i = 1:5 0:2980 0:7372 0:7836 0:8190 0:9217
�i = 1:8 0:2270 0:6833 0:7396 0:7824 0:9061
�i = 2:0 0:2827 0:6343 0:7006 0:7505 0:8928

From Table 1 and 2, it can be seen that the modi�ed Gauss-Seidel method is
convergent for Example 1 and 2 when �i 2 [0; �i), i.e., �(M�1

� N�) < 1. This con�rm
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the result of Theorem 2 in Section 3. In particular, if we take �i = 1 for i = 1; :::; n�1,
then the preconditioner PSmax(�) reduces to the one considered in [11].
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