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Abstract

In this study, we investigate the following Liénard type p-Laplacian equation
with a deviating argument

('p(x
0(t)))0 + f(x(t))x0(t) + �(t)g(x(t� �(t))) = e(t):

Some new criteria for guaranteeing the existence and uniqueness of periodic so-
lutions of this equation are given by using the Manásevich�Mawhin continuation
theorem and some analysis techniques. Our results hold under weaker conditions
than some known results from the literature, and are more e¤ective. In the last
section, an illustrative example is provided to demonstrate the applications of our
results.

1 Introduction

In the present paper, we consider the following Liénard type p-Laplacian equation with
a deviating argument:

('p(x
0(t)))0 + f(x(t))x0(t) + �(t)g(x(t� �(t))) = e(t); (1)

where p > 1, 'p : R ! R, 'p(s) = jsjp�2s is a one-dimensional p-Laplacian; f; e 2
C(R;R); �; � ; g 2 C1(R;R), �(t), �(t) are two T -periodic functions with

R T
0
e(t)dt = 0,

T > 0.
As is well known, the Liénard equation can be derived from many �elds, such

as physics, mechanics and engineering technique �elds, and an important question is
whether this equation can support periodic solutions. In the past few years, a lot of
researchers have contributed to the theory of this equation with respect to existence of
periodic solutions. For example, in 1928, Liénard [8] discussed the existence of periodic
solutions of the following equation

x00(t) + f(x(t))x0(t) + k(x(t))x(t) = 0; (2)
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where f; k 2 C(R;R), some su¢ cient conditions for securing the existence of peri-
odic solutions were established. Afterward, Levinson and Smith [9] also studied (2)
and obtained some new results on the existence of periodic solutions. In 1977, some
continuation theorems in [4] were introduced by Gaines and Mawhin. Applying these
continuation theorems, many authors discussed the existence of periodic solutions of
(2) and generalized the results obtained in [9, 8] (see e.g. [1, 6, 7, 15]); a few authors
studied the existence and uniqueness of periodic solutions of (2) (see [10, 17]). In 1998,
Manásevich and Mawhin [14] studied periodic solutions for certain nonlinear systems
with p-Laplacian-Like operators and provided some new continuation theorems which
extended some results in [4]. Subsequently, some authors discussed the existence of pe-
riodic solutions of certain Liénard type p-Laplacian equations (see e.g. [2, 3, 11, 12, 13])
using these generalized continuation theorems. However, as far as we know, there exist
much fewer results on the existence and uniqueness of periodic solutions of (1). The
main di¢ culty lies in the �rst term ('p(x

0(t)))0 of (1) (i.e., the p-Laplacian operator
'p : R! R, 'p(s) = jsjp�2s is nonlinear when p 6= 2), the existence of which prevents
the usual methods of �nding some criteria for guaranteeing the uniqueness of periodic
solutions of (2) from working. Recently, Gao and Lu [5] discussed the existence and
uniqueness of periodic solution of (1) by translating (1) into a two-dimensional system
and got some results as follows:

THEOREM 3.1 ([5]). Assume that the following condition holds:

(H0) �(t) > 0; g0(x) < 0 and �(t) � " (" is a su¢ ciently small constant) for all t; x 2
R.

Then (1) has at most one T -periodic solution.

REMARK 1. However, upon examining their proof of Theorem 3.1, it was found
that if �(t) 6= 0 for 8 t 2 R, then Theorem 3.1 does not hold; more precisely, for
arbitrarily given " > 0, v(t�) = y1(t�)�y2(t�) > 0 does not positively imply v(t��") =
y1(t

� � ")� y2(t� � ") > 0, thus in line 3 on page 377 in [5] the inequality v00�) > 0 is
incorrect. On the other hand, if �(t) � 0, then Theorem 3.1 is correct.

THEOREM 3.2 ([5]). Assume that the following conditions hold:

(H1) There exist r1 > 0; r2 > 0;m > 0 and d � 0 such that

(i) r1jujm � jg(u)j � r2jujm for all juj > d,

(ii) ug(u) < 0 for all juj > d.

(H2) A :=

8><>:
h

r2T

r1
R T
0
(�(t)+1)dt

i 1
m

2
1�m
m < 1; 0 < m � 1;h

r2T

r1
R T
0
(�(t)+1)dt

i 1
m

< 1; m > 1:

(H3) Suppose one of the following conditions holds:

(i) m = p� 1 and �1r2Tm+2�
m+1
p =2(1�A)m+1 < 1,

(ii) m < p� 1,
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where �1 = maxt2[0;T ] j�(t)j.

Then (1) has at least one T -periodic solution.

REMARK 2. However, upon examining their proof of Theorem 3.2 in [5], we have
found that the conditions (H1)(i), (H2) and (H3) can be dropped.

We now reconsider the periodic solutions of (1). The main purpose of this paper is
to establish some new criteria for guaranteeing the existence and uniqueness of periodic
solution of (1). We obtain some new su¢ cient conditions for securing the existence and
uniqueness of periodic solutions of (1) by using the Manásevich�Mawhin continuation
theorem and appropriate analysis techniques. Our results extend and improve the
above-mentioned Theorems 3.1 and 3.2 in [5] (see Remarks 3 and 4 and Example 1).

2 Lemmas

For convenience, de�ne

jxj1 = max
t2[0;T ]

jx(t)j; jx0j1 = max
t2[0;T ]

jx0(t)j; jxjk =
 Z T

0

jx(t)jkdt
!1=k

:

Let
C1T :=

�
x 2 C1(R;R) : x is T -periodic

	
;

which is a Banach space with the norm

kxk = max fjxj1; jx0j1g :

The following conditions will be used later:

(A0) �(t) > 0; g0(x) < 0 and �(t) � 0 for all t; x 2 R,

(A00) �(t) < 0; g0(x) > 0 and �(t) � 0 for all t; x 2 R,

(A1) �(t) > 0 for all t 2 R and there exists d � 0 such that ug(u) < 0 for all juj � d,

(A01) �(t) < 0 for all t 2 R and there exists d � 0 such that ug(u) > 0 for all juj � d.

For the periodic boundary value problem

('p(x
0(t)))0 = h(t; x; x0); x(0) = x(T ); x0(0) = x0(T ); (1)

where h 2 C(R3;R) is T -periodic in the �rst variable, the following continuation the-
orem can be induced directly from the theory in [14], and is cited as Lemma 1 in
[16].

LEMMA 1 (Manásevich�Mawhin [14]). Let B = fx 2 C1T : kxk < rg for some
r > 0. Suppose the following two conditions hold:
(i) For each � 2 (0; 1) the problem ('p(x0(t)))0 = �h(t; x; x0) has no solution on @B.
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(ii) The continuous function F de�ned on R by F (a) = 1
T

R T
0
h(t; a; 0)dt is such that

F (�r)F (r) < 0.
Then the periodic boundary value problem (1) has at least one T -periodic solution on
�B.

According to the Theorem 3.1 in [5] and the above-mentioned Remark 1, we have
the following results.

LEMMA 2. Suppose (A0) holds. Then (1) has at most one T -periodic solution.

LEMMA 3. Suppose (A00) holds. Then (1) has at most one T -periodic solution.

3 Main Results

Now we are in the position to present our main results.

THEOREM 1. Suppose (A1) holds. Then (1) has at least one T -periodic solution.

PROOF. Consider the homotopic equation of (1):

('p(x
0(t)))0 + �f(x(t))x0(t) + ��(t)g(x(t� �(t))) = �e(t); � 2 (0; 1): (1)

First, we prove the set of T -periodic solutions of (1) are bounded in C1T . Let S � C1T
be the set of T -periodic solutions of (1). If S = ;, the proof is ended. Suppose S 6= ;,
and let x 2 S. Noticing that x(0) = x(T ), x0(0) = x0(T ), 'p(0) = 0, and

R T
0
e(t)dt = 0,

it follows from (1) that Z T

0

�(t)g(x(t� �(t)))dt = 0;

which, together with �(t) > 0, implies that there exists t0 2 [0; T ] such that

g(x(t0 � �(t0))) = 0: (2)

Denote �t0 = t0 � �(t0), by (A1), (2) implies

jx(�t0)j < d: (3)

Then, for any t 2 [�t0; �t0 + T ],

jx(t)j =
����x(�t0) + Z t

�t0

x0(s)ds

���� < d+ Z �t0+T

�t0

jx0(s)jds = d+
Z T

0

jx0(s)jds;

which leads to

jxj1 = max
t2[�t0;�t0+T ]

jx(t)j < d+ jx0j1: (4)

De�ne E1 = ft : t 2 [0; T ]; jx(t� �(t))j > dg; E2 = ft : t 2 [0; T ]; jx(t� �(t))j � dg:
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Multiplying x(t) and (1) and then integrating from 0 to T , by (A1) we haveZ T

0

x0pdt = �
Z T

0

('p(x
0(t)))0x(t)dt

= �

Z T

0

�(t)g(x(t� �(t))x(t)dt� �
Z T

0

e(t)x(t)dt

= �

Z
E1

�(t)g(x(t� �(t))x(t)dt+ �
Z
E2

�(t)g(x(t� �(t))x(t)dt

��
Z T

0

e(t)x(t)dt

� �

Z
E2

�(t)g(x(t� �(t))x(t)dt� �
Z T

0

e(t)x(t)dt

�
Z
E2

j�(t)g(x(t� �(t))jjx(t)jdt+
Z T

0

je(t)jjx(t)jdt

�
�

max
t2[0;T ];jxj�d

j�(t)g(x)j+ jej1
�
T jxj1:

Let M0 =

�
max

t2[0;T ];jxj�d
j�(t)g(x)j+ jej1

�
T . Then we obtain

jx0jp �M1=p
0 jxj1=p1 : (5)

Let q > 1 such that 1=p+ 1=q = 1. Then by Hölder inequality we have

jx0j1 � jx0jpj1jq = T 1=qjx0jp: (6)

By (4), (5) and (6), we can get

jx0j1 � T 1=qM1=p
0 (d+ jx0j1)1=p;

which yields that there exists M1 > 0 such that jx0j1 < M1 since p > 1, and this
together with (4) implies that jxj1 < d+M1.
Meanwhile, there exists t̂0 2 [0; T ] such that x0(t̂0) = 0 since x(0) = x(T ). Then by

(1) we have, for t 2 [t̂0; t̂0 + T ],

j'p(x0(t))j =

����Z t

t̂0

('p(x
0(s)))0ds

����
= �

����Z t

t̂0

(f(x(s))x0(s) + �(s)g(x(s� �(s))) + e(s))ds
����

�
Z T

0

(jf(x(s))jjx0(s)j+ j�(s)g(x(s� �(s)))j+ je(s)j)ds

< FM1 + (G+ jej1)T;



Y. Wang and L. H. Zhang 67

where F = maxfjf(x)j : jxj � d+M1g, G = maxfj�(t)g(x)j : t 2 [0; T ]; jxj � d+M1g.
So we obtain

jx0j1 = max
t2[0;T ]

fj'p(x01=(p�1)g < (FM1 + (G+ jej1)T )1=(p�1):

Let M = maxfd+M1; (FM1 + (G+ jej1)T )1=(p�1)g. Then kxk < M .
Second, we prove the existence of T -periodic solutions of (1). Set

h(t; x(t); x0(t)) = �f(x(t))x0(t)� �(t)g(x(t� �(t))) + e(t): (7)

Then (1) is equivalent to the following equation

('p(x
0(t)))0 = �h(t; x(t); x0(t)); � 2 (0; 1): (8)

Set
B = fx : x 2 C1T ; kxk < rg where r �M: (9)

By (7), we know that (8) has no solution on @B as � 2 (0; 1), so condition (i) of Lemma
1 is satis�ed. By the de�nition of F in Lemma 1 we get

F (a) =
1

T

Z T

0

h(t; a; 0)dt =
1

T

Z T

0

(e(t)� �(t)g(a))dt = � 1
T

Z T

0

�(t)g(a)dt:

This together with �(t) > 0 for all t 2 R and (A1) yields that F (r)F (�r) < 0, i.e.,
condition (ii) of Lemma 1 is satis�ed. Therefore, it follows from Lemma 1 that there
exists a T -periodic solution x(t) of (1). This completes the proof.

REMARK 3. It is easy to see that Theorem 1 in this study holds under weaker
conditions than Theorem 3.2 in [5].

Similar to the proof of Theorem 1, we can also get the following result.

THEOREM 2. Suppose (A01) holds. Then (1) has at least one T -periodic solution.

Together with Lemmas 2 and 3 and Theorems 1 and 2, we can directly obtain two
theorems as follows.

THEOREM 3. Suppose (A0) and (A1) hold. Then (1) has a unique T -periodic
solution.

THEOREM 4. Suppose (A00) and (A
0
1) hold. Then (1) has a unique T -periodic

solution.

4 Example and Remark

In this section, we apply the main results obtained in previous sections to an example.

EXAMPLE 1. Consider the existence and uniqueness of a 2�-periodic solution of
the following Liénard type p-Laplacian equation

('p(x
0(t)))0 + f(x(t))x0(t) + �(t)g(x(t)) = e(t); (1)

where p > 1, f 2 C(R;R), �(t) = 1+ cos2 t, g(x) = �x3� 2x, e(t) = cos t and T = 2�.
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PROOF. If p < 4, the condition (H3) in Theorem 3.3 in [5] does not hold any more
sincem = 3 > p�1. Therefore, Theorem 3.3 in [5] fails, while, our criterion in Theorem
3 in this study remains applicable, as we now show. Let d be an arbitrary positive
constant, then we can easily check that the conditions (A0) and (A1) in Theorem 3
in this study hold. Hence, Theorem 3 shows that there exists a unique 2�-periodic
solution of (1).

REMARK 4. This example demonstrates that the conditions in our Theorem 3 are
weaker than those conditions in Theorem 3.3 in [5] when �(t) � 0, and demonstrates the
existence of a unique periodic solution to certain Liénard type p-Laplacian equations
where the latter cannot be used to decide. Therefore, our results extend and improve
the results in [5].
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