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Abstract

A k-lift of a graph G is a graph with vertex set V (G)� [k], and for each edge
(i; j) 2 E(G) there is a perfect matching between �bers fig � [k] and fjg � [k].
If these matchings are chosen independently and uniformly at random, then we
say that we have a random k-lift. In this paper, we view random lifts as network
growth models and study their robustness based on the logarithm of the Estrada
index. It is shown that the robustness of random k-lifts is decreasing with the
parameter k for large networks. We compare our results with edge connectivity
for random lifts of networks. Interestingly, these two measures indicate di¤er-
ent behaviors for robustness. Simulations are provided that demonstrate this
discrepancy.

1 Introduction

The lift of a graph is a basic concept that originates from topological graph theory [19]
and has applications in distributed computing [1]. It is a simple scheme to expand a
graph while keeping the maximum and minimum degrees unvariant. The lift of a graph
has some appealing spectral features (see Section 2). In this paper we consider it as a
kind of network growth model and explore its robustness by virtue of a certain spectral
measure. Many purely graph theoretical results have been known for (random) lifts of
graphs such as connectivity [2, 3], chromatic number [4], hamiltonicity [9, 10], spectral
distribution [18, 20, 23] and perfect matchings [21]. To the best of our knowledge, this
is the �rst research to treat the robustness issue of random lifts of graphs.
Social organizations, biological organisms and ecological communities are all ex-

amples of complex networks, which rely for their function and performance on their
robustness [22]. The classical approach for determining robustness of networks en-
tails the use of basic concepts from graph theory. For instance, the connectivity of a
graph (c.f. [28, 29, 30, 31]) is a fundamental measure of robustness of a network [8].
Node/edge connectivity, de�ned as the size of the smallest node/edge cut, describes
the robustness of a network to the deletion of nodes/edges.
Recently, the concept of the logarithm of the Estrada index [12], dubbed as �natural

connectivity�, is proposed in [26, 35] as a spectral measure of robustness in complex
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networks. The natural connectivity is expressed as the weighted sum of closed walks
of all lengths. The authors consider the redundancy of walks as the root of robustness
of networks, which ensures that the connection between vertices still remains possible
in spite of damage to the network. It is shown [26, 35, 36] that the (normalized)
natural connectivity has acute discrimination in measuring the robustness of complex
networks and can exhibit the variation of robustness sensitively even for disconnected
networks. Some perturbation results for the Estrada index are provided in [25] for
weighted networks. The robustness of Internet AS-level topology is tested in [37] using
normalized natural connectivity.
In this paper, as mentioned above, we study the robustness of random k-lifts of

graphs based on the normalized natural connectivity. Our key �nding is that the
robustness of random k-lifts is decreasing with the parameter k for large networks. We
compare our results with edge connectivity for random lifts of networks. Interestingly,
these two measures indicate di¤erent behaviors for robustness. Simulation results are
presented for various networks such as power-law graphs and classical random graphs
to illustrate this discrepancy.
The rest of this paper is organized as follows. Section 2 contains preliminaries

for (normalized) natural connectivity and random k-lifts. The theoretical results and
numerical simulation studies are given in Sections 3 and 4, respectively. We conclude
the paper in Section 5.

2 Preliminaries

In this section, we present some necessary preliminaries leading to the (normalized)
natural connectivity and random lifts of graphs.
A complex network can be viewed as a graph [8]. Let G = (V;E) be a simple

undirected graph with vertex set V and edge set E � V �V . Let jV j = n be the number
of vertices. Let A(G) = (aij)n�n be the adjacency matrix of G, where aij = aji = 1
if (i; j) 2 E, and aij = aji = 0 otherwise. Let �1 � �2 � � � � � �n be the eigenvalues
of the adjacency matrix A since it is real and symmetric. The set f�1; �2; : : : ; �ng is
called the spectrum of A (or G).
A weighted sum of the number of closed walks is de�ned in [35] by S =

P1
k=0 nk=k!,

where nk is the number of closed walks of length k in G. Since nk =
Pn

i=1 �
k
i [6], we

have

S =

1X
k=0

nX
i=1

�ki
k!
=

nX
i=1

1X
k=0

�ki
k!
=

nX
i=1

e�i : (1)

Note that (1) corresponds to the original Estrada index of the graph [11, 12, 13, 34, 38],
which has been developed for the study of bipartivity [16], subgraph centrality [17]
and the degree of proteins and other long-chains biopolymers [14, 15]. The natural
connectivity of G is then de�ned as

��(G) = ln
�S
n

�
= ln

� 1
n

nX
i=1

e�i
�
; (2)
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which corresponds to a kind of average eigenvalue of A since �n � �� � �1. Moreover,
it is shown [35] that the asymptotic bounds of natural connectivity as n ! 1 is
0 � �� � n� lnn. Hence, the normalized natural connectivity [37] is de�ned as

~�(G) =
��(G)

n� lnn (3)

eliminating the di¤erent network size e¤ect.
Now we introduce the concept of graph lifts. For a natural number k 2 N, denote

[k] := f1; 2; : : : ; kg. A k-lift of graph G is a graph G(k) with vertex set V � [k] and edge
set E(k) = [(i;j)2EMij , where eachMij is a perfect matching between sets fig� [k] and
fjg�[k]. Thus G(k) induced from G has kn vertices and much more complex interaction
structures. Suppose the matchings fMijg are chosen independently and each of them
is uniformly distributed. Then the random graphs generated in this manner are called
random k-lifts of graph G (see e.g. [2, 3]).
The spectrum of G(k) has a remarkable feature. Let A(k) be the adjacency matrix of

a k-lift G(k) of graph G. It is shown [18, 20] that the spectrum of A(k) always contains
the spectrum of A in the sense of multisets: any eigenvalue of A with multiplicity m is
an eigenvalue of A(k) with multiplicity � m.

3 Main Results

Let new(A(k)) denote the di¤erence between the spectrum of A(k) and the spectrum
of A. It is a multiset in that if � has multiplicity m1 in the spectrum of A(k) and
multiplicity m2 in the spectrum of A, � occurs m1�m2 times in new(A(k)). Let 4 be
the maximum degree of G.
The following lemma is a useful result for the spectrum of G(k). It can be proved

by using a concentration inequality [24] for sums of independent random matrices.

LEMMA 1 ([23]). For k 2 N, let G(k) be a random k-lift of graph G. With the
above notations, for " 2 (0; 1), we have

P
�

sup
�2new(A(k))

j�j � 16
p
4 ln(2kn=")

�
� 1� ": (4)

Lemma 1 indicates that, with high probability, all eigenvalues of G(k) that are not
eigenvalues of G are of the order O

�p
4 ln(kn)

�
. Our result regarding the normalized

natural connectivity of G(k) goes as follows.

THEOREM 1. For k 2 N, let G(k) be a random k-lift of graph G. Let " = "(n)! 0
su¢ ciently slowly (e.g. "� ne�n). If 4� ln(n="), then

~�(G(k)) � 1

k
(5)

almost surely, as n!1. If 4 = O
�
ln(n=")

�
, then

~�(G(k)) = 0 (6)
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almost surely, as n!1.
For any graph G with n vertices, the normalized natural connectivity ~�(G) resides

in the interval [0; 1] for large enough n as mentioned above. For the empty graph H
and the complete graph Kn, it is known that [35] the normalized natural connectivity
~�(H) � 0 and ~�(Kn) ! 1, as n ! 1, giving the weakest and strongest �robustness�
of networks, respectively. Intermediately, for a classical random graph [7] Gn;p, it is
shown that (see [27] Theorem 2.1 or [36] Theorem 3.3) the natural connectivity almost
surely is

��(Gn;p) = np� lnn (7)

as n ! 1. Hence, the normalized natural connectivity ~�(Gn;p) tends to p, the edge
density.
The inequality (5) in Theorem 1 provides an upper bound for the normalized natural

connectivity of G(k), which, surprisingly, is a decreasing function of k. Intuitively, the
number of edges as well as the intricacy of edge structures of G(k) are increasing with
k and thus, the robustness of G(k) may also be enhanced. In fact, it is shown in [3]
that if G is a connected graph with minimum degree �(G) = � � 3, then G(k) is �-edge-
connected almost surely as k !1. Recall that for any graph G, the edge connectivity
is always not bigger than its minimum degree (see e.g. [8]). Since �(G(k)) � �(G),
the random k-lifts G(k) are rather robust as per the measure of edge-connectivity for
large enough k. In the next section, we will perform some simulation studies to further
illustrate the discrepancy of these two network robustness measures.
Next, notice that a 1-lift of graph G is G itself. Then take k = 1 in (6) in Theorem

1 yields the following

COROLLARY 1. Let " = "(n) ! 0 su¢ ciently slowly (e.g. " � ne�n). For any
undirected graph G with maximum degree 4 = O

�
ln(n=")

�
, we have ~�(G) = 0 almost

surely, as n!1.
We now present the proof of Theorem 1 employing Lemma 1.

PROOF OF THEOREM 1. Recall that G(k) has kn vertices, whose maximum
degree is equal to that of G. By Lemma 1, the de�nition (3) and the fact that �1 � 4
(c.f. [6] pp. 43), we obtain

~�(G(k)) �
ln
�ne4+(k�1)ne16p4 ln(2kn=")

kn

�
kn� ln(kn)

�
ln
�
e4

k + e16
p
4 ln(2kn=")

�
kn� ln(kn) (8)

with probability at least 1� ".
If 4� ln(n="), the right-hand side of (8) is bounded above by

ln
�
(1 + o(1))e4=k

�
kn� ln(kn) � n� ln k + o(1)

kn� ln(kn) ! 1

k

as n ! 1, since the maximum degree 4 � n. Now the statement (5) of Theorem 1
follows by setting "! 0.
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If 4 = O
�
ln(n=")

�
, then the right-hand side of (8) is bounded above by

O

�
ln
�
(1 + 1=k)e16 ln(2kn=")

�
kn� ln(kn)

�
= O

� ln(2kn=")

kn� ln(kn)

�
for large enough n. Consequently, we have

P
�
0 � ~�(G(k)) � O

� ln(2kn=")

kn� ln(kn)

��
� 1� ": (9)

Hence, (6) follows by letting "� ne�n and "! 0 in (9). The proof is complete.

4 Simulation Results

In this section, we provide some simulations to explore the normalized natural connec-
tivity of random lifts of graphs and compare it with another robustness measure, edge
connectivity.
(i) First, we generate a base network G1 with a power-law degree distribution using

the BA model [5], where n = 2000 and average degree < d >= 8. Fig. 1 shows the
normalized natural connectivity for random k-lifts G(k)1 for di¤erent values of k. We
observe that ~�(G(k)1 ) is decreasing which agrees with our above analyses. The inset in
Fig. 1 shows the behavior of edge connectivity for G(k)1 as a function of the parameter
k. Note that as the values of k become large, the edge connectivity vibrates relatively
slightly, indicating a steady degree of robustness of the random lifts in contrast to the
outcome of normalized natural connectivity.
(ii) Next, we generate a base network G2 from an Erd½os-Rényi random graph model

Gn;p [7], with n = 2000 and p = 1=2. Fig. 2 shows the normalized natural connectivity
~�(G

(k)
2 ) is decreasing with k. We may conclude that, as observed in Fig. 1 and Fig.

2, the normalized natural connectivity will lose discrimination for large enough k.
Indeed, this is what Theorem 1 implies. The inset in Fig. 2 shows the behavior of
edge connectivity for G(k)2 as a function of k. Similar with the inset of Fig. 1, the
edge connectivity here focuses on some �xed value, again suggesting a steady degree
of robustness of G(k)2 in contrast to the outcome of ~�(G(k)2 ).

5 Conclusion

We have used spectral graph theory to investigate the robustness of random k-lifts of
graphs based on the Estrada index (more precisely, the normalized natural connec-
tivity), which is rooted in the inherent structural properties of a network. Lifts of
graphs are related with hierarchical, multi-scale and growing descriptions of complex
networks. Our result suggests that the robustness of random k-lifts is decreasing with k
for large-scale networks. An external measure of network robustness, edge connectivity,
is compared with normalized natural connectivity for random lifts of networks. Inter-
estingly, these two measures indicate di¤erent behaviors for the evolution of robustness.
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Figure 1: The robustness measured by normalized natural connectivity of G(k)1 versus
di¤erent k. G1 is generated using the BA model with n = 2000 and < d >� 8. Inset:
the robustness measured by the edge connectivity of G(k)1 versus di¤erent k.
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Figure 2: The robustness measured by normalized natural connectivity of G(k)2 versus
di¤erent k. G2 is generated from the ER random graph model G2000;1=2. Inset: the

robustness measured by the edge connectivity of G(k)2 versus di¤erent k.
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Simulation results are provided to illustrate this discrepancy. For future research, it is
desirable to address the random lifts of graphs with some speci�c structures such as
the bipartite graphs, which are networks consisting of two types of nodes with edges
running only between nodes of unlike type (see e.g. [32, 33]).

Acknowledgment. I sincerely thank the referees whose comments helped improve
the paper.
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