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Abstract

This paper deals with variational inclusions of the form : 0 2 '(z) + F (z)
where ' is a single-valued function admitting a second order Fréchet derivative
and F is a set-valued map from Rq to the closed subsets of Rq. In order to ap-
proximate a solution �z of the previous inclusion, we use an iterative scheme based
on a multipoint method. We obtain, thanks to some semistability properties of
�z, local superquadratic or cubic convergent sequences.

1 Introduction

This paper is devoted to the study of a multipoint iterative method for approximating
a solution of the variational inclusion

0 2 '(z) + F (z); (1)

where ' is a single-valued function and F is a set-valued map.
Variational inclusions are an abstract model of a wide variety of variational prob-

lems including linear and non-linear complementarity problems, systems of non-linear
equations, variational inequalities. In the last decade, several iterative methods for
solving the inclusion (1) have been introduced. These methods consist in generating
an iterative sequence (zn) obtained by subsequently solving implicit subproblems of the
form 0 2 A(zn; zn+1) + F (zn+1) where A denotes some approximation of the mapping
'.
Dontchev [7, 8] associates to (1) a Newton-type method based on a partial lineariza-

tion. Inspired and motivated by his works, various authors proved the convergence of
some methods based on di¤erent techniques such as one or second order Taylor�s ex-
pansion, interpolation formula and a multipoint formula given in [23]. For more details
on these methods, the reader could refer to [6, 12, 13, 14, 15, 17, 20]. Let us point out
that all these methods have been studied when a metric regularity property is satis�ed
for the set-valued map ('+F )�1 or one of its approximation. For more details on this
property, the reader could refer to [1, 2, 9, 10, 11, 18, 19, 22].
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In this paper, the function ' is de�ned from Rq to Rq and F is a set-valued map from
Rq to the closed subsets of Rq: Our aim is to study inclusion (1) using an assumption
which is directly connected to a solution : the semistability concept. This concept has
been introduced by Bonnans [3] for variational inequalities. A solution �z of a variational
inclusion is said to be semistable if, given a small perturbation on the left-hand side,
a solution z of the perturbed variational inclusion that is su¢ ciently close to �z is such
that the distance of z to �z is of the order of the magnitude of the perturbation.
Studies using such property has recently been made in [4, 5] for methods based on

the second order Fréchet derivative. Following these works, we consider the relation

0 2 '(zk) +
NX
i=1

aiM
i
k(zk+1 � zk) + F (zk+1); (2)

where M i
k is a q � q matrix satisfying some conditions and we prove the convergence

of this procedure under the semistability property. We can observe that if M i
k =

'0
�
zk + �i(zk+1 � zk)

�
, we get the method proposed in [6] and if N = 2; a1 = a2 =

1
2 ;

�1 = 0 and �2 = 1; we obtain the method introduced in [4].
The rest of the paper is organized as follows. In section 2, we collect a number of

basic de�nitions regarding semistability of solutions and regularity for set-valued maps
that we will need afterwards. Then, in section 3, we study the behaviour of the method
(2) and we give a classical problem which could be treated with our method.
In this paper, for simplicity reasons, all the norms are denoted by k:k.

2 Background Materials

Here, we recall the concept of semistability introduced by Bonnans in [3].

DEFINITION 1. A solution �z of (1) is said to be semistable if c1 > 0 and c2 > 0
exist such that, for all (z; �) 2 Rq �Rq, solution of � 2 '(z) + F (z); and kz � �zk � c1,
then kz � �zk � c2 k�k.
Note that a su¢ cient condition for semistability is the strong regularity of Robinson

[21]. Recently, Izmailov and Solodov in [16] used this concept in order to study the
convergence of Inexact Josephy-Newton method for solving generalized equations. We
will also need the following Hölder-type property.

DEFINITION 2. Let ' : Rq �! Rq be a function. One says that ' satis�es a
Hölder-type condition on a neighborhood 
 of �z if

9K > 0; � 2]0; 1]; k'(x)� '(y)k � K kx� yk� ;8x; y 2 
:

Note that when � = 1, we have the Lipschitz condition for '.

3 Convergence Analysis

Our purpose in this section is to provide an iterative procedure for solving (1) and to
show how the semistability property can be an e¢ cient tool to estimate the rate of
convergence of the method (2).
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First of all, we consider the approximation  of ' de�ned by

 (u; v) = '(u) +
NX
i=1

ai'
0�u+ �i(v � u)�(v � u) (3)

and then we introduce the algorithm:

� given any starting point z0 in some neighborhood of �z which is a solution of (1),

� for k = 0; 1; : : :, while zk does not satisfy (1), choose �k(:) an approximation of
 (zk; �) de�ned by �k(z) = '(zk) +

PN
i=1 aiM

i
k(z � zk);

� compute a solution zk+1 of

0 2 �k(z) + F (z): (4)

The main result of this study reads as follows.

THEOREM 1. Let �z be a semistable solution of (1) and let (zk) be a sequence
computed by (2) which converges towards �z. We suppose that '00 is a locally Lipschitz
function. Then :

(i) if  (zk; zk+1) � �k(zk+1) = o
�
kzk+1 � zkk2

�
then (zk) converges superquadrati-

cally.

(ii) if  (zk; zk+1)� �k(zk+1) = O
�
kzk+1 � zkk3

�
then (zk) converges cubically.

To prove Theorem 1, we will need the following lemma:

LEMMA 1. Let ' : Rq ! Rq be a function admitting a second order Fréchet
derivative which is L-Lipschitz on 
 and let  be de�ned by (3). One has the following
inequality

k'(v)�  (u; v)k �
�
L

6
+
L

2

NX
i=1

jaij�2i
�
kv � uk3 : (5)

PROOF. We have

k'(v)�  (u; v)k =

'(v)� '(u)�
NX
i=1

ai'
0�u+ �i(v � u)�(v � u)


=

'(v)� '(u)� '0(u)(v � u)� 12'00(u)(v � u)2 + '0(u)(v � u)
+
1

2
'00(u)(v � u)2 �

NX
i=1

ai'
0�u+ �i(v � u)�(v � u)

:
Let

A1 =

'(v)� '(u)� '0(u)(v � u)� 12'00(u)(v � u)2
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and

A2 =

'0(u)(v � u) + 12'00(u)(v � u)2 �
NX
i=1

ai'
0�u+ �i(v � u)�(v � u)

 :
Since '00 is L-Lipschitz on 
, we obtain A1 � L

6 kv � uk
3
: Moreover,

A2 =

'0(u)(v � u) + 12'00(u)(v � u)2 �
NX
i=1

ai'
0�u+ �i(v � u)�(v � u)


=


NX
i=1

ai

��
'0(u)� '0

�
u+ �i(v � u)

��
(v � u)

�
+
1

2
'00(u)(v � u)2


=


NX
i=1

ai

�
� �i

Z 1

0

'00
�
u+ �it(v � u)

�
(v � u)(v � u)dt

�
+
1

2
'00(u)(v � u)2


=


NX
i=1

�ai�i
Z 1

0

'00
�
u+ �it(v � u)

�
(v � u)2dt+

NX
i=1

ai�i

Z 1

0

'00(u)(v � u)2dt


�
NX
i=1

jaij�2iL kv � uk
3
Z 1

0

tdt � L

2

NX
i=1

jaij�2i kv � uk
3
:

And then

k'(v)�  (u; v)k �
�
L

6
+
L

2

NX
i=1

jaij�2i
�
kv � uk3 :

PROOF of THEOREM 1. We write (4) as

rk 2 '(zk+1) + F (zk+1); (6)

with
rk := �k +�(zk+1; zk);

where �k =  (zk; zk+1) � �k(zk+1) and �(zk+1; zk) = '(zk+1) �  (zk; zk+1): Using
(5), we get k�(zk+1; zk)k = o(kzk+1 � zkk2): Then krkk = o(kzk+1 � zkk2):
Since �z is semistable, we get kzk+1 � �zk = O(krkk): Then

kzk+1 � �zk = o(kzk+1 � �zk2 + 2 kzk+1 � �zk kzk � �zk+ kzk � �zk2);

i.e.,

0 = lim
k!1

kzk+1 � �zk
kzk+1 � �zk2 + 2 kzk+1 � �zk kzk � �zk+ kzk � �zk2

= lim
k!1

1

kzk+1 � �zk+ 2 kzk � �zk+ kzk��zk2
kzk+1��zk

:



48 A Multipoint Iterative Method for Semistable Solutions

Since zk ! �z; the latter relation implies that limk!1
kzk��zk2
kzk+1��zk = +1; i.e.,

kzk+1 � �zk = o(kzk � �zk2)

which proves (i).
Similarly for (ii), with (5), we get

krkk = O(kzk+1 � zkk3):

Thanks to the semistability of �z, we obtain

kzk+1 � �zk = O(kzk+1 � zkk3):

Since (zk) converges superquadratically then
kzk+1�zkk
kzk��zk ! 1, and then

kzk+1 � �zk = O(kzk � �zk3);

which completes the proof.

Let us extend this study to the case where the second order Fréchet derivative '00

of the function ' satis�es a Hölder-type condition.

LEMMA 2. Let ' : Rq ! Rq be a function admitting a second order Fréchet
derivative and let  be de�ned by (3). If '00 satis�es a Hölder-type condition with
constants � and L on 
, one has, for all u; v 2 
, the following inequality

k'(v)�  (u; v)k �
�

L

(1 + �)(2 + �)
+

L

1 + �

NX
i=1

jaij�1+�i

�
kv � uk2+� : (7)

PROOF. The proof is similar to the proof of Lemma 1. We write

k'(v)�  (u; v)k � A1 +A2

with

A1 =

'(v)� '(u)� '0(u)(v � u)� 12'00(u)(v � u)2


and

A2 =

'0(u)(v � u) + 12'00(u)(v � u)2 �
NX
i=1

ai'
0�u+ �i(v � u)�(v � u)

 :
Since '00 satis�es a Hölder-type condition with constants � and L on 
, we obtain

A1 �
L

(1 + �)(2 + �)
kv � uk2+� :

Moreover,

A2 �
NX
i=1

jaij�1+�i L kv � uk2+�
Z 1

0

t�dt � L

1 + �

NX
i=1

jaij�1+�i kv � uk2+� :
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Then

k'(v)�  (u; v)k �
�

L

(1 + �)(2 + �)
+

L

1 + �

NX
i=1

jaij�1+�i

�
kv � uk2+� :

THEOREM 2. Let �z be a semistable solution of (1) and let (zk) be a sequence
computed by (2) which converges towards �z. If '00 satis�es a Hölder-type condition
with constants � and L then :

(i) if  (zk; zk+1)� �k(zk+1) = o
�
kzk+1 � zkk1+�

�
then (zk) converges superlinearly;

(ii) if  (zk; zk+1)��k(zk+1) = O
�
kzk+1 � zkk2+�

�
then (zk) converges superquadrat-

ically.

PROOF. The proof is similar to that of Theorem 1, but using Lemma 2 instead of
Lemma 1.

As an illustration of our results let us consider the standard following nonlinear
programming problem :

minimize f(x) (8)

subject to �
gi(x) � 0; 8i 2 I
gj(x) = 0; 8i 2 J

where I; J are a partition of f1; :::; pg; f : Rn ! R is twice continuously di¤erentiable
on Rn while the functions gi : R ! R; i = 1; :::; p are di¤erentiable on Rn and are
twice di¤erentiable in a neighborhood of a solution x� of (8).
To problem (8) is associated the �rst order optimality condition (in which � 2 Rp):�

rf(x) +rg(x) � � = 0
gi(x) � 0; 8i 2 I; gj(x) = 0; 8j 2 J; �I � 0; �igi(x) = 0; 8i 2 I: (9)

As observed in [3], we may embed (9) into (2) in putting z = (x; �);

'(x; �) =

�
rf(x) +rg(x) � �
�g(x)

�
and F (x; �) = N(x; �) = f0g � N�(�) where � = f� 2 Rp; �I � 0;8i = 1; :::; pg and
N�(�) denotes the normal cone to � at the point � i.e.

N�(�) =

�
; if � =2 �
f� 2 Rp; �J = 0; �I � 0; �i = 0 if �i > 0; 8i 2 Ig

:

The corresponding variational inequality can be written in the following way:�
rf(x) +rg(x) � � = 0
g(x) 2 N�(�)

: (10)
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Thanks to a result given in Bonnans [3] and using a similar reasoning, we obtain
that the semistability of (10) is equivalent to :8<: (y; �) = 0 is the unique solution of H(�x; ��)y +rg(�x) � � = 0;

y 2 C; �I0 � 0; �i = 0 if gi(�x) < 0; 8i 2 I;
�irgi(�x)y = 0; 8i 2 I0

(11)

where

H(x; �) = r2f(x) +
pX
i=1

�ir2gi(x);

�I = fi 2 I; gi(�x) = 0g;

I0 = fi 2 �I; ��i = 0g;

I+ = fi 2 �I; ��i > 0g

and

C = fy 2 Rn; rgI(�x)y � 0; rgJ(�x)y = 0; rgI+(�x)y = 0g:

For more details, the reader can refer to [3].
Now, let us apply the method (2) presented in this paper to (10). The subproblem

to be solved at the step k is :8><>:
rf(xk) +H(xk; �k)(xk+1 � xk) +rg(xk) � �k+1 = 0

g(xk) +

pX
i=1

airg(xk + �i(xk+1 � xk))(xk+1 � xk) 2 N�(�k+1):

As the evaluation of rg(xk) is already necessary in order to evaluate '(xk; �k); the
only part of the Jacobian that perhaps needs to be approximated is H(xk; �k):We then
obtain the following algorithm:

� given any starting point (x0; �0) 2 Rn � Rp

� if (xk; �k) is not solution of (10), choose Mk; an n � n matrix, compute the
(xk+1; �k+1) solution of8><>:

rf(xk) +Mk(xk+1 � xk) +rg(xk) � �k+1 = 0

g(xk) +

pX
i=1

airg(xk + �i(xk+1 � xk))(xk+1 � xk) 2 N�(�k+1):

When Mk = H(xk; �k); by applying Theorem 1 and the relation (11),we obtain the
convergence of the sequence computed by (2) with M i

k = rg(xk + �i(xk+1 � xk)).
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