Fixed Points For Weak Contractions In G-Metric Spaces^{*}

Chintaman Tukaram Aage[†], Jagannath Nagorao Salunke[‡]

Received 24 March 2011

Abstract

In this paper we prove a fixed point theorem for weak contractions in G-metric spaces. Our result is supported by an example.

1 Introduction

The concept of weak contraction is introduced by Alber and Guerre-Delabriere [1]. They proved the existence of fixed points for single-valued maps satisfying weak contractive conditions on Hilbert spaces. Rhoades [14] showed that most results of [1] are still true for any metric spaces. The weak contraction was defined as follows.

DEFINITION 1. A mapping $T: X \to X$, where (X, d) is a metric space, is said to be a weak contraction if

$$d(Tx, Ty) \le d(x, y) - \phi(d(x, y))$$

where $x, y \in X$ and $\phi : [0, \infty) \to [0, \infty)$ is continuous and nondecreasing function such that $\phi(t) = 0$ if and only if t = 0.

In fact Banach contraction is a special case of weak contraction by taking $\phi(t) = (1-k)t$ for 0 < k < 1. In this connection Rhoades [14] proved the following very interesting fixed point theorem

THEOREM 1 ([14]). Let (X, d) be a complete metric space, and let T be a weak contraction on X. If $\phi : [0, \infty) \to [0, \infty)$ is a continuous and nondecreasing function with $\phi(t) > 0$ for all $t \in (0, \infty)$ and $\phi(0) = 0$, then T has a unique fixed point.

Gahler [7, 8] coined the term of 2-metric spaces. This is extended to D-metric space by Dhage [4, 5]. In 2003, Mustafa and Sims [11] introduced a new structure called G-metric space as a generalization of the usual metric space. They have studied some fixed point theorems for various types of mappings in this new structure.

DEFINITION 2 ([11]). Let X be a nonempty set, and let $G: X \times X \times X \to R+$, be a function satisfying:

^{*}Mathematics Subject Classifications: 47H10, 46B20.

 $^{^\}dagger School of Mathematical Sciences, School of Mathematical Sciences, North Maharashtra University, Jalgaon- 425001, India$

[‡]School of Mathematical Sciences, Swami Ramanand Marathawada University, Nanded, India

(G1) G(x, y, z) = 0 if x = y = z, (G2) 0 < G(x, x, y); for all $x, y \in X$, with $x \neq y$, (G3) $G(x, x, y) \leq G(x, y, z)$, for all $x, y, z \in X$ with $z \neq y$, (G4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$ (symmetry in all three variables), and (G5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ for all $x, y, z, a \in X$ (rectangle inequality). Then the function G is called a generalized metric, or, more specially a G-metric on X, and the pair (X, G) is called a G-metric space.

EXAMPLE 1 ([11]). Let (X, d) be a usual metric space. Then (X, G_s) and (X, G_m) are G-metric spaces where

$$G_s(x, y, z) = d(x, y) + d(y, z) + d(x, z)$$

for all $x, y, z \in X$ and

$$G_m(x, y, z) = \max\{d(x, y), d(y, z), d(x, z)\}$$

for all $x, y, z \in X$.

DEFINITION 3 ([11]). Let (X, G) be a *G*-metric space and let (x_n) be a sequence of points of *X*. We say that (x_n) is *G*-convergent to *x* if $\lim_{n,m\to\infty} G(x, x_n, x_m) = 0$; that is, for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $G(x, x_n, x_m) < \epsilon$, for all $n, m \ge N$. We refer to *x* as the limit of the sequence (x_n) and write $x_n \xrightarrow{G} x$.

PROPOSITION 1 ([11]). Let (X, G) be a G-metric space. The following statements are equivalent.

(1) (x_n) is G-convergent to x.

(2) $G(x_n, x_n, x) \to 0$, as $n \to \infty$.

(3) $G(x_n, x, x) \to 0$, as $n \to \infty$.

DEFINITION 4 ([11]). Let (X, G) be a *G*-metric space. A sequence (x_n) is called *G*-Cauchy if given $\epsilon > 0$, there is $N \in \mathbb{N}$ such that $G(x_n, x_m, x_l) < \epsilon$ for all $n, m, l \ge N$; that is if $G(x_n, x_m, x_l) \to 0$ as $n, m, l \to \infty$.

PROPOSITION 2 ([11]). In a G-metric space (X, G), the following two statements are equivalent.

(1) The sequence (x_n) is G-Cauchy.

(2) For every $\epsilon > 0$, there exists $N \in \mathbf{N}$ such that $G(x_n, x_m, x_m) < \epsilon$ for all $n, m \ge N$. DEFINITION 5 ([11]). A *G*-metric space (X, G) is said to be *G*-complete (or a complete *G*-metric space) if every *G*-Cauchy sequence in (X, G) is *G*-convergent in (X, G).

DEFINITION 6 ([11]). A *G*-metric space (X, G) is called symmetric if G(x, y, y) = G(y, x, x) for all $x, y \in X$.

PROPOSITION 3 ([11]). Let (X, G) be a *G*-metric space. Then the function G(x, y, z) is jointly continuous in all three of its variables.

PROPOSITION 4 ([11]). Every G-metric space (X, G) defines a metric space (X, d_G) by

$$d_G(x,y) = G(x,y,y) + G(y,x,x)$$

for all $x, y \in X$.

24

Note that if (X, G) is a symmetric *G*-metric space, then

$$d_G(x,y) = 2G(x,y,y), \forall x,y \in X$$

2 Main Results

We have the following main theorem.

THEOREM 2. Let (X, G) be a complete G-metric space and let $T : X \to X$ be a mapping satisfying

$$G(Tx, Ty, Tz) \le G(x, y, z) - \phi(G(x, y, z)) \tag{1}$$

for all $x, y, z \in X$. If $\phi : [0, \infty) \to [0, \infty)$ is a continuous and nondecreasing function with $\phi^{-1}(0) = 0$, $\phi(t) > 0$ for all $t \in (0, \infty)$, then T has a unique fixed point in X.

PROOF. Let $x_0 \in X$. We construct the sequence (x_n) by $x_n = Tx_{n-1}, n \in N$. If $x_{n+1} = x_n$ for some n, then trivially T has a fixed point. We assume $x_{n+1} \neq x_n$, for $n \in N$. From (1), we have

$$G(x_n, x_{n+1}, x_{n+1}) = G(Tx_{n-1}, Tx_n, Tx_n) \le G(x_{n-1}, x_n, x_n) - \phi(G(x_{n-1}, x_n, x_n)).$$
(2)

By the property of ϕ , we have

$$G(x_n, x_{n+1}, x_{n+1}) \le G(x_{n-1}, x_n, x_n).$$

Similarly we can show that

$$G(x_{n-1}, x_n, x_n) \le G(x_{n-2}, x_{n-1}, x_{n-1}).$$

This shows that $G(x_n, x_{n+1}, x_{n+1})$ is monotone decreasing and consequently there exists $r \ge 0$ such that

$$\lim_{n \to \infty} G(x_n, x_{n+1}, x_{n+1}) \to r \text{ as } n \to \infty.$$
(3)

By taking $n \to \infty$ in (2), we obtain

$$r \le r - \phi(r) \tag{4}$$

which is a contradiction unless r = 0. Hence

$$\lim_{n \to \infty} G(x_n, x_{n+1}, x_{n+1}) \to 0 \text{ as } n \to \infty.$$
(5)

Now we prove that (x_n) is a Cauchy sequence. Suppose (x_n) is not a Cauchy sequence. Then there exists $\epsilon > 0$ for which we can find subsequences $(x_{m(k)})$ and $(x_{n(k)})$ of (x_n) with n(k) > m(k) > k such that

$$G(x_{n(k)}, x_{m(k)}, x_{m(k)}) \ge \epsilon.$$
(6)

Further, corresponding to m(k), we can choose n(k), such that it is the smallest integer with n(k) > m(k) and satisfying (6). Then

$$G(x_{n(k)}, x_{m(k)-1}, x_{m(k)-1}) < \epsilon.$$
 (7)

Then we have

$$\epsilon \leq G(x_{m(k)}, x_{n(k)}, x_{n(k)}) \leq G(x_{m(k)}, x_{n(k)-1}, x_{n(k)-1}) + G(x_{n(k)-1}, x_{n(k)}, x_{n(k)})$$

$$< \epsilon + G(x_{n(k)-1}, x_{n(k)}, x_{n(k)}).$$
(8)

Setting $k \to \infty$ and using (5),

$$\lim_{k \to \infty} G(x_{m(k)}, x_{n(k)}, x_{n(k)}) = \epsilon.$$
(9)

Now,

$$G(x_{n(k)}, x_{m(k)}, x_{m(k)}) \le G(x_{n(k)}, x_{n(k)-1}, x_{n(k)-1}) + G(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}) + G(x_{m(k)-1}, x_{m(k)}, x_{m(k)})$$

and

$$G(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}) \le G(x_{n(k)-1}, x_{n(k)}, x_{n(k)}) + G(x_{n(k)}, x_{m(k)}, x_{m(k)}) + G(x_{m(k)}, x_{m(k)-1}, x_{m(k)-1}).$$

Setting $k \to \infty$ in the above inequality and using (5) and (9), we get

$$\lim_{k \to \infty} G(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}) = \epsilon.$$

From (1) and (6), we have

$$\epsilon \leq G(x_{m(k)}, x_{n(k)}, x_{n(k)}) = G(Tx_{m(k)-1}, Tx_{n(k)-1}, Tx_{n(k)} - 1)$$

$$\leq G(x_{m(k)-1}, x_{n(k)-1}, x_{n(k)-1}) - \phi(G(x_{m(k)-1}, x_{n(k)-1}, x_{n(k)-1})).$$

Letting $k \to \infty$, we see that

$$\epsilon \le \epsilon - \phi(\epsilon)$$

clearly it is a contradiction if $\epsilon > 0$. So we must have $\epsilon = 0$. This shows that (x_n) is a Cauchy sequence in X. Since X is a complete G-metric space, so there exist $p \in X$ such that

$$\lim_{n \to \infty} x_n \to p.$$

Now we claim that Tp = p. For this we consider

$$G(x_n, Tp, Tp) = G(Tx_{n-1}, Tp, Tp)$$

\$\le G(x_{n-1}, p, p) - \phi(G(x_{n-1}, p, p)).\$

By taking $n \to \infty$

$$G(p, Tp, Tp) \le 0.$$

But $G(p, Tp, Tp) \ge 0$. So we have Tp = p, i.e. p is a fixed point of T. Suppose T has two fixed points p and q, then

$$\begin{aligned} G(p,q,q) &= G(Tp,Tq,Tq) \\ &\leq G(p,q,q) - \phi(G(p,q,q)), \end{aligned}$$

by the property of ϕ , this is contradiction if G(p,q,q) > 0. Hence we must have G(p,q,q) = 0 and p = q.

EXAMPLE 2. Let x = [0,1] and d(x,y) = |x - y|. Define G(x,y,z) = |x - y| + |y - z| + |x - z|. Then (X,G) is a complete *G*-metric space. Let $T(x) = x - \frac{x^2}{2}$ and $\phi(t) = \frac{t^2}{2}$. Without loss of generality, we assume x > y > z. Then

$$\begin{split} & G(Tx,Ty,Tz) \\ &= |Tx - Ty| + |Ty - Tz| + |Tx - Tz| \\ &= \left| \left(x - \frac{x^2}{2} \right) - \left(y - \frac{y^2}{2} \right) \right| + \left| \left(y - \frac{y^2}{2} \right) - \left(z - \frac{z^2}{2} \right) \right| \\ &+ \left| \left(x - \frac{x^2}{2} \right) - \left(z - \frac{z^2}{2} \right) \right| \\ &= \left(x - \frac{x^2}{2} \right) - \left(y - \frac{y^2}{2} \right) + \left(y - \frac{y^2}{2} \right) - \left(z - \frac{z^2}{2} \right) + \left(x - \frac{x^2}{2} \right) - \left(z - \frac{z^2}{2} \right) \\ &= \left[(x - y) + (y - z) + (x - z) \right] - \left[\left(\frac{x^2}{2} - \frac{y^2}{2} \right) + \left(\frac{y^2}{2} - \frac{z^2}{2} \right) + \left(\frac{x^2}{2} - \frac{z^2}{2} \right) \right] \\ &\leq \left[(x - y) + (y - z) + (x - z) \right] - \frac{1}{2} [(x - y)^2 + (y - z)^2 + (x - z)^2] \\ &= G(x, y, z) - \phi(G(x, y, z)). \end{split}$$

Clearly T satisfies (1). By Theorem 2, T has a unique fixed point i.e. 0.

3 Remarks

In the above theorem, if we define $d_G(x, y) = G(x, y, y) + G(y, x, x)$, then d_G is a metric on X and the above theorem coincide with Theorem 1 of Rhoades.

References

- Ya. I. Alber and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, in: I. Gohberg, Yu. Lyubich (Eds.), New Results in Operator Theory, in: Advances and Appl., 98(1997), 7–22.
- [2] I. Beg and M. Abbas, Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed Point Theory Appl., (2006), 1–7. Article ID 74503.

- [3] B. S. Choudhury and N. Metiya, Fixed points of weak contractions in cone metric spaces, Nonlinear Anal., 72(2010), 1589–1593.
- [4] B. C. Dhage, Generalized metric space and mapping with fixed point, Bull. Cal. Math. Soc., 84(1992), 329–336.
- [5] B. C. Dhage, Generalized metric space and topological structure I, An. stiint. Univ. Al.I. Cuza Iasi. Mat(N.S), 46(2000), 3–24.
- [6] P. N. Dutta and B. S. Choudhury, A generalisation metric spaces, Fixed Point Theory Appl., (2008), Article ID 406368, 8 pages.
- [7] S. Gahler, 2-metriche raume und ihre topologische strukture, Math. Nachr., 26(1963), 115–148.
- [8] S. Gahler, Zur geometric 2-metriche raume, Revue Roumaine de Math.Pures et Appl., 11(1966), 664–669.
- [9] N. Hussain and G. Jungck, Common fixed point and invariant approximation results for noncommuting generalized (f, g)-nonexpansive maps, J. Math. Anal. Appl., 321(2006), 851–861.
- [10] Z. Mustafa, A new structure for generalized metric spaces with applications to fixed point theory, PhD Thesis, The University of Newcastle, Australia, 2005.
- [11] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis, 7(2)(2006), 289–297.
- [12] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl., 2009, Article ID 917175, 10 pages.
- [13] Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in Gmetric spaces, International Journal of Mathematics and Mathematical Sciences, 2009, Article ID 283028, 10 pages.
- [14] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47(2001), 2683–2693.
- [15] N. Shahzad, Invariant approximations, Generalized *I*-contractions and *R*-subweakly commuting maps, Fixed Point Theory Appl., 1(2005), 79–86.
- [16] Y. Song, Coincidence points for noncommuting *f*-weakly contractive mappings, Int. J. Comput. Appl. Math., 2(1)(2007), 51–57.
- [17] Y. Song, Common fixed points and invariant approximations for generalized (f, g)nonexpansive mappings, Commun. Math. Anal., 2(2007), 17–26.
- [18] Y. Song and S. Xu, A note on common fixed-points for Banach operator pairs, Int. J. Contemp. Math. Sci., 2(2007), 1163–1166.
- [19] Q. N. Zhang and Y. S. Song, Fixed point theory for generalized φ-weak contractions, Appl. Math. Lett., 22(1)(2009), 75–78.