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Abstract

Let {U(p, q)}p>q¢>0 be the N-periodic discrete evolution family of m x m ma-
trices having complex scalers as entries generated by L(C™)-valued, N-periodic
sequence of m X m matrices (A,) where N > 2 is a natural number. We
proved that the Poincare map U(N,0) is dichotomic if and only if the matrix

Al .
Vi = > U(N,v)e™ is invertible and there exists a projection P which com-
v=1
mutes with the map U(N,0) and the matrix V,, such that for each p € R
and each vector b € C™ the solutions of the discrete Cauchy sequences Tn41 =
Apxy + e Pb, o =0 and ypt1 = A;lyn + e (I — P)b, yo = 0 are bounded.

1 Introduction

It is well-known, see [2], that a matrix A is dichotomic, i.e. its spectrum does not
intersect the unit circle if and only if there exists a projector, i.e. an m X m matrix
P satisfying P2 = P, which commutes with A and has the property that for each real
number p and each vector b € C™, the following two discrete Cauchy problems

Tny1 = Azp+e""Pb, nely
g = 0 (1)
0
and '
Yny1 = ATly,+eH (I — P, neZ,
- 0 (2)
Yo

have bounded solutions. In particular, the spectrum of A belongs to the interior of the
unit circle if and only if for each real number p and each m-vector b, the solution of
the Cauchy problem (1) is bounded. Continuous version of the above result is given in
[4].
On the other hand, in [3], it is shown that an N-periodic evolution family U =
{U(p, q) }p>¢>0 of bounded linear operators acting on a complex space X, is uniformly
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exponentially stable, i.e. the spectral radius of the Poincare map U(N,0) is less than
one, if and only if for each real number p and each N-periodic sequence (z,) decaying
to n = 0, we have

Z eMRU (ny k)21

k=1

sup = M(p,b) < oco.

n>1

Recently in [1], it is proved that the spectral radius of the matrix U(N,0) is less
than one, if for each real y and each m-vector b, the operator V,, := 320 e U(N, v)

v=
is invertible and
kN

sup Z eU=DU (N, 7)b|| < oco.
n>1 ||
= j=1
This note is a continuation of the latter quoted paper. In fact, we prove that the
matrix U(N,0) is dichotomic if and only if for each real p and each m-vector b, the
operator V,, := 25:1 e U (N,v) is invertible and solutions of the two discrete Cauchy
sequences like (A, Pb, x,0) are bounded.

2 Preliminary Results

Consider the following Cauchy Problem

Znt1 = Azy, z2n €CM, neZy
2n(0) = 2.

(3)

where A is an m x m matrix. It is easy to check that the solution of (3) is A™z.

Consider the following lemma which is used in Theorem 1.

LEMMA 1. Let N > 1 be a natural number. If ¢, is a polynomial of degree n
and ANg, = 0 for all n = 0,1,2... where Az, = 2,,1 — 2, then ¢ is a C™-valued
polynomial of degree less than or equal to N — 1.

For proof see [2].

Let p4 be the characteristic polynomial associated with the matrix A and let o(A)
{A1, A2, ..., Ak}, B < mbe its spectrum. There exist integer numbers my, ma, ..., my
1 such that

vVl

Pa) = (= A)™ (A= A)™2 .. (A= )™, my +mg e+ my, = m.

Then in [2] we have the following theorem.

THEOREM 1. For each z € C™ there exists w; € W := ker(A — \;1)™, (j €
{1,2,...,k}) such that

A"z = A"wy + Awg + -+ - + A" wy,.

Moreover, if w;(n) := A™w; then w;(n) € W; for all n € Z, and there exist a C™-
valued polynomials g;(n) with deg (¢;) < m; — 1 such that

wi(n) = Njg;(n), n€Zy, je{l,2,... k}.
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FROOF. Indeed from the Cayley-Hamilton theorem and using the well known fact
that

ker[pg(A)] = ker[p(A)] & ker[q(A)]
whenever the complex valued polynomials p and q are relatively prime, it follows that
C"=Wi W& & W (4)
Let z € C™. For each j € {1,2,...,k} there exists a unique w; € W; such that
zZ=w1 +wg+ -+ wg

and then
Atz =A"w1 + A"we + -+ A"wy, nEZy.

Let gj(n) = A; "w;(n). Successively one has
Agi(n) = AN "w;(n))
= A\ "AMw;)
—(n+1 —n
— )‘j ( )A7L+1wj _ )‘j A"’LUJ‘
—(n+1 n
= A" - DA ;.

Again taking A,
A%qj(n) = AlAgi(n)]
= AN TVA - DA W)
= XA DA AT (A -\ ) A,

= A;(n+2)(A — )\jI)QAnU}j.

Continuing up to m; we get A™ig;(n) = )\j_(n+mj) (A—=X;I)™ A"w;. But w;(n) belongs

to W; for each n € Zy. Thus A™ig;(n) = 0. Using Lemma 1, we can say that the
degree of polynomial g;(n) is less than or equal to m; — 1.

3 Dichotomy and Boundedness

A family U = {U(p,q) : (p,q) € Z+ X Zy} of an m x m complex valued matrices is
called discrete periodic evolution family if it satisfies the following properties.

L. U(p,q)U(q,r) =U(p,r) forallp>gqg>r=>0;
2. U(p,p) =1 forall p>0 and

3. there exists a fixed N > 2 such that U(p + N,q+ N) = U(p,q) for all p,q €
Ly, P24
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Let us consider the following discrete Cauchy problem:

Zni1 = Anzn +€*b, n €Ly
20 = 0,

where the sequence (A,,) is N-periodic, i.e. A,y = A, for all n € Z, and a fixed N >

2. Let oA o i
. no1An_z- Ay ifj<n—1,
U(”’J)_{I e if;:n

then, the family {U(n, j)}n>;>0 is a discrete N-periodic evolution family and the so-
lution (z,) of the Cauchy problem (A, i, b)o is given by:

2n = Z U(n, j)eG=Dp
j=1

Let us denote by C; = {z € C: |2| =1}, Cf ={z€C:|z] >1}and C] ={z€C:
|z| < 1}. Clearly C = C; UC;" U Cy . Then with the help of above partition of C for
matrix A we give the following definition:

DEFINITION 1. The matrix A is called:

(i) stable if o(A) is the subset of C] or, equivalently, if there exist two positive
constants N and v such that [|[A"|| < Ne " for alln =0,1,2...,

(ii) ewpansive if o(A) is the subset of C;” and
(iii) dichotomic if o(A) have empty intersection with set Cj.

It is clear that any expansive matrix A whose spectrum consists of A1, Ag, ..., Ag is
an invertible one and its inverse is stable, because

1 1

U(A_l) = {)\717 )\72, ..

1 _
.,)\—k}c(]l.

N
Let L := U(N,0), V, = > U(N,v)e"™ and A;A; = A;A; for any i,j € {1,2,...,n}.
v=1

We recall that a linear map P acting on C™ is called projection if P? = P.

THEOREM 2. Let N > 2 be a fixed integer number. The matrix L is dichotomic
if and only if the matrix V,, is invertible and there exists a projection P having the
property PL = LP and PV, = V,, P such that for each p € R and each vector b € C™
the solutions of the following discrete Cauchy problems

{ Tpi1 = Apy +€""Pb, neZ, 5)

JJOZO

and

Yni1 = Ay + (I — P)b, n€Z,
Yo =0.
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are bounded.

PROOF. Necessity: Working under the assumption that L is a dichotomic matrix
we may suppose that there exists n € {1,2,...,£} such that

A < [Aef <o S A < T < A <00 <Al
Having in mind the decomposition of C™ given by (4) let us consider
Xi=WieWed---0oW,, Xo=W, 1 &W,2®---&W,.

Then C™ = X; & X5. Define P : C™ — C™ by Px = x1, where . = x1 + 22, 1 € X3
and o9 € Xo. It is clear that P is a projection. Moreover for allz € C™ and alln € Z .,
this yields

PLFz = P(L*(21 + x2)) = P(L*(x1) + LF(z2)) = LF(zy) = L* P,
where the fact that X; is an LF— invariant subspace, was used. Then PLF = LFP.

Similarly by using the fact that X; and X, are V, invariant subspaces we can prove
that PV, = V,,P. We know that the solution of the Cauchy problem (5) is:

n

Ty =Y Uln,j)e*0=VPb,

Put n = Nk +r, where r =0,1,2,...,N — 1. Then

Nk+r o
ENkpr = D U(Nk+r,5)e =) Pb,
j=1

Let
A, ={v,v+N,...,v+(k—1)N}, where ve {1,2,...,N}
and
R={kN+1,kN+2,...,kN +r}.
Then
RU<U11/V:1AV) = {1,2,...,7’L}.
Thus
TNktr = _“‘Z Z (Nk+r,7) ””Pb—i—e_“LZUNk_H« §)e™ Pb
v= 1]6./4 ]GR
N k-1 .
= e‘“‘ZZU(Nk—i—r,u+sN)e’“(”+SN)Pb+
v=1 s=0

T
e Z U(Nk + 7, Nk 4 p)e(EN+0) ppy
p=1
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N k-1
= Y S U, 0)UN,0) 5" DU(N, )N pp 4
v=1 s=0

e Z U(r, p)eEN+0) pp,

p=1

Let z, = e also we know that L = U(N,0), thus

k—1 N
INger = e HU(r,0) Z L(k_s_l)zz Z U(N,v)e™ Pb +
s=0 v=1

eﬂ"‘zﬁ Z U(r, p)e'? Pb

p=1
= e MU 0)(LF T 2) + LF 22 4+ L0271 Y U(N, v)e™ Pb
v=1
—|—e‘“‘zﬁ Z U(r, p)e'? Pb.
p=1
We know that ny:l U(N,v)e™ =V, thus
TNepr = € PU(0) (LY 2l + LF 22 + -+ L0201V, Pb+

e_i“zﬁ Z U(r, p)e'* Pb.

p=1

By our assumption we know that L is dichotomic and |z,| =1 thus z, is contained in
the resolvent set of L therefore the matrix (z,/ — L) is an invertible matrix. Thus

enkrr = € U 0)(zud — L)zl — L)V, Pb+e 25y U(r, p)e' Pb
p=1

= e MU(r,0)(zu] — L)' (25T — L¥)PV,b+ e 25y " U(r, p)e'* Pb.
p=1

We know that V), is a surjective map, so there exists b’ such that V,b =0’ then
ENktr =€ PU(r,0) (2,1 — L)_l(zﬁl — L*PY + e‘“‘zﬁ Z U(r, p)e'? Pb.
p=1
Taking norm of both sides

.
|2 Nkgrll = e #U(r,0)(zu] — L)~ (251 — L¥)PY + e 25 > " U(r, p)e* Pb|
p=1
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lonirell < UG0) (el — L) 2EPY | 4 [U(r,0) (2,1 — L)~ PLRY| +
D llU(r,p)Pb|
p=1

1T, (2T = L)THIPY | + 1T (r, 011 (zd = L) M| PL™|

A

+ > lU(r, p) Po].
p=1

Using THEOREM 1, We have

LRV = Np1(k) + Nspa(k) + -+ + Aépe (k),
Thus

PLFY = Nip1(k) + Aspa (k) + -+ + Appy (K),

where each p;(k) are C™-valued polynomials with degree at most (m; — 1) for any
i €{1,2,...,&}. From hypothesis we know that |X\;| < 1 for each i € {1,2,...,7n}.
Thus ||PL*b'|| — 0 when k — 0o and so x4, is bounded for any r = 0,1,2,..., N—1.
Thus z,, is bounded. For the second Cauchy problem: We have

ZU "= (I — P)b.

where L L .
_ . A2 A, AT ifj<n-—1
1 _ n—14tn—2 j = s
v n.3) { I if j = n.

It is easy to check that U~!(n,j) is also a discrete evaluation family. By putting
n=Nk+r, where r =0,1,2,..., N — 1. Then

Nk+r .
YNktr = Z U™ (Nk +7,§)e™=D(I — P)b.

As AjA; = AjA; foralli,j € {1,2,...,n} thus L=! = U~1(V,0). By similar procedure
as above we obtained that

lynksrll = IIU’l(T,O)IIII(ZuI 7N = PV +
IIU_1 )l (zud = LHTHILT (I = P)V,u(B)l| +
ZIIU (r; p)(I — P)bl|.

Since (I — P)V,b € X5 the assertion would follow. But
Xo=Wy 1 ®Wyi2a®--- ® We.

Each vector from X5 can be represented as a sum of { — n vectors wy41, W42, . - ., We.
It would be sufficient to prove that L’kwj — 0, forany j € {n+1,...,&}. Let W €
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W1, Wyga, ..., We}, say W = ker(L — AI)7, where v > 1 is an integer number and
|A] > 1. Consider 7 € W\ {0} such that (L — AI)r; =0 and let r9,73,...,r, given by
(L=ADrj=rj_1, 7=2,3,...,7. Then B :={ry,re,...,r,} is a basis in Y. It is then
sufficient to prove that L‘krj — 0, forany j =1,2,...,7. For j = 1 we have that
L7 Fpr = %Tl — 0. For j =2,3,...,7, denote Xj, = L~ "r;. Then (L — )Y X}, =0 i.e.

X — C’iXk_loz + C’ng_QOzQ ++ O] Xg—na? =0, forall k>~ (7)

where a = % Passing for instance at the components, it follows that there exists a
C™-valued polynomial P, having degree at most v — 1 and verifying (7) such that
Xy, = a®P, (k). Thus X}, — 0 as k — oo, i.e. L=Fr; — 0 for any j € {1,2,...,~}. Thus
(yn) is bounded.

Sufficiency: Suppose to the contrary that the matrix L is not dichotomic. Then
o(L)NTy # ¢. Let w € o(L) NT'y. Then there exists a nonzero y € C™ such that
Ly = wy. It is easy to see that L*y = w*y. Choose 1, € R such that e = w. We
know that

TNkrr(po b)) = e U 0) (LM 2 + LF 22+ + L0251 ) PV, b+
ks
e o P Z U(r, p)e'to? Pb .

p=1
But V,, is surjective, thus there exists by € C™ such that V, by =y, so

eNkir(pio bo) = U 0)(LF 2] + LA 22+ -+ L0251 Py +

e "o Sk Z U(r, p)ei”opro

p=1
= e "U(r,0) (PLk_lyzgO + IDLk_Qy,zllLO +- 4 PLOyzﬁo_l) +
e~ ok Z U(r, p)e'o? Pb
p=1
= e "oU(r, O)P(kalyzgo + Lk*Qyzi0 + -t Loyz/’f;l) +

e ok Z U(r, p)e*oP Pb
p=1
= e MU(r, O)P[ke_i”ﬂzk_l%} + e ok Z U(r, p)e™oP Pb
p=1

Clearly
kN (g, bo) — o0 when &k — oo.

Thus a contradiction arises. In [1] an example, in terms of stability is given which
shows that the assumption on invertibility of V,,, for each real number p, cannot be
removed.
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