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Abstract

In this paper we develop maximum principles for solutions of metaharmonic
equations defined on arbitrary n dimensional domains. As a consequence we
obtain an uniqueness result for the corresponding metaharmonic boundary value
problem.

1 Introduction

In the paper [4] we showed that if a1, a3 > 0 (a1, ag constants), as(z) > 0, as(z) >0
in Q C R? and the curvature of 9Q € C?*¢ is strictly positive, then the boundary value
problem
A — a1 A%u 4 az(2)A%u — azAu + ag(z)u = f  in Q,
{uzg,Au:h,Agu:i,A?’u:j on € (1)

has at most a classical solution in C®(2) N C%(Q).
Using a generalized maximum principle we are able here to extend the above men-
tioned result for a the m metaharmonic problem

Ay — a"m—l(x)Am_lu + a"rn—?(x)Am_Qu + -+ (_l)ma‘O(l‘)u = f in Q7 (2)
u=g, Au=gs,..., A" lu =g, on

where a;, 4 =0,...,m — 1, are bounded in the bounded domain  C R?, n > 2. Here
we deal with classical solutions u of (2), i.e., u € C?*™(Q) N C?*™~2(Q), m > 3.

This result generalizes the result of Dunninger [5] (the case m =2, n > 2, a3 = 0,
ag = constant > 0 and Q arbitrary), Schaefer [7] (the case curvature of 9 > 0, m =
n = 2), Schaefer [8] (the case a2, a1 > 0, ag > 0 with m = 3,n = 2, curvature of
0 > 0), S. Goyal and V. Goyal [6] and Danet [3] (the variable coefficient case with
m =3 and 2 C R™ arbitrary).

Throughout this paper we shall assume that 2 C R",n > 2 is a bounded domain,
m > 3 and the coefficients a;, 7 = 0,...,m—1 are bounded in 2. Also we shall suppose
that ag # 0. diam$2 will denote the diameter of €.
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2 Main Results

The uniqueness result will be a consequence of the following generalized maximum
principle and the next lemmas.

THEOREM 1 ([4]). Let u € C?(Q)NC°(Q) satisfy the inequality Lu = Au-+y(z)u >
0 in 2, where v > 0 in 2. Suppose that

in+14

(diam )2 (3)

supvy <
Q

holds. Then, the function u/w; satisfies a generalized maximum principle in Q, ie,
either the function u/w; assumes its maximum value on 02 or is constant in 2. Here
wi(z) =1—a(z}+---+22) € C®°(R") and a = supg 7/2n.
If  lies in strip of width d and if we impose the restriction
2
T
supvy < —, 4
UpY < o (4)

we obtain that u/ws satisfies a generalized maximum principle in 2. Here

2z; — d) 1~ —=
Wy = CcOs ﬂé(;—l—&'))jr_[lCOSh(sxj) € C™(0),
for some ¢ € {1,...,n}, where € > 0 is small.

For simplicity, we shall consider only the case when m is even, i.e., we shall deal
with the equation

A" — a1 (2) A" A o () AU — - ag(z)u =0 in Q. (5)

Similar results will hold if m is odd.
LEMMA 1. Let u be a classical solution of (5). Let

P, = %(Am—lu)2 + aW;*l (Am_2u)2 + (Am—3u)2 42,

Suppose that a;,—3,...,a1 > 0, az,a9 > 0 and A(1/a;,—2) < 0 in Q. If one of the
following conditions is satisfied

(a)

4am—1 —0m-3 —Am—4 — - — Qo Z 0 inQ (6)

and

_ 4 4
A =max<s 1-+supag,2+supai,...,2+ supa,_3, max< 1,sup dm=2 < .n+ ;
Q Q Q o 2 (diam )2

(7)

Am—1>0 inQ (8)

(b)
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and

Am—3+ -+ ag 4n + 4
} )

A
max{ > SUP 2 < ([dam )2’

then either the function P;/wy assumes its maximum value on 9f or is constant in Q.
PROOF. A computation (using equation (5)) shows that in €2,

%A ((Am—lu)Q) Z Am—luAmu

— Gjmfl(Am_l’U,)Q _ am72A'm—2uAm—1u

3 AT T3UAT Ty — = aguA™ T M,
From the inequalities

(—1)'a;_3 A" PuA™ ty > —aif;?’(Amflu)Q —a;_3(APu)? i =3,...,m, (10)

and 1
iA (am,g(Amfzu)Q) > o AT IUA 2y,
we get
1
§A (((Am—lu)2 + am72(Am—2u)2))
> (am-1—am-3/4—am_g/d— - — a0/4)(Am_1u)2
— O —3(A™T3U)? — g (A T)? — - — agu.
Since

A ((Am73u)2) > 2Amf2uAm73u > 7(Am72u)2 o (Am73u)27
A ((Am74u)2) Z 2Am73'LLAm74U Z _(Am73u)2 o (Am74u)2,
Au? > 2uAu > —Au? — u2,
we deduce that P; satisfies the differential inequality
AP, > (@1 — Gm3/4 — Qa4 — - — ag/4) (A" Tu)? — (A" 2y)?
- (24 am_g)(Am’&u)2 - = (24 al)(Au)2 -1+ ao)uz.

Hence
APl—i—’yPle inQ,

where

v = max{1l + supag,2 + supas, ..., 2 + sup a,,—3, max{1l,sup a;,—2/2}}.
Q Q Q Q

By (7) we have
dn+4

(diam Q)2°
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Now the proof of (a) follows from Theorem 1. The proof for (b) is similar.
LEMMA 2. Let u be a classical solution of (5). Let

P2 _ %(Amilu)Q + (Am72u)2 + (Am73u)2 4 +u2.

Suppose that a,,_1,...,a; > 0and ag > 0in Q. If

ap ai Am—2 4n + 4
Sup — +sup —,...,2+s VA p </, 11
max {blslzp 5 + slslzp 5 + bgp 5 1} (iam 2 (11)
where A7 = max{1 + supg, ag, 2, supg ai, ..., 2 + supq a@,g}, then either the function

P, /w; assumes its maximum on 0N or is a constant in .
PROOF. As in the proof of Lemma 1, we get

1

§A ((Amflu)2) Z AmfluAnLu

= A 1 (A" M) — G o ATTPUA™ Ty — - — aguA™ T

Since a
—aguA™ ty > —ZO(A"“HL)2 — agu?,
_am72UAm_1uAm_2u > — a‘ﬂzlfz (Am—lu)Q _ am,g(Am_Qu)Q,

and

A ((Amf2u)2) > 7(Am72u)2 o (Amflu)Q,

Au? > —Au? — uz,

we get that

AP2 Z _(1+am—2/4+am—3/4+"' +a1/4—|—a0/4)(Am_1u)2 — (2—|—am_2)(Am_2u)2
—(24 am_3)(A™3u)? — - — (24 a1)(Au)? — (1 + ag)u?.

Hence
APQ—F’YPQZO inQ,

where
v =max{A, {supao/2 +supai/2+--- +supam—2/2 + 2}}.
Q Q Q

LEMMA 3. Let u be a classical solution of (5). Suppose that a,,—2,...,a0 >0 in
Q. If one of the following conditions is fulfilled

(a)
dn 44

(diam Q)2 (12)

max{1 + supa%,2 + supa%, 24 supafnd} <
Q Q Q
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and 4a,,_1 > m -+ 3 in Q; or

(b)

(13)

m—1 < dn 44
2 (diam )2

max{l+supa%,2—&—supa?,...,?—l—supafn2,2+
Q Q Q

and a1 > 01in Q,
then either the function P;/w; assumes its maximum on 952 or is a constant in €.

This may be proved exactly as Lemma 2, except the inequalities (10) are replaced
by

. . 1 .
(=1)la;_3 A 3uA™ 1y > —Z(Am_lu)2 —al_3(A73u)? i =3,... m.

It is clear that Lemma 3 remains valid if the coefficients a,,_s, . . . , ag have arbitrary
sign in €.

The following particular result becomes sharper than Lemma 2 if we choose a¢ and
a1 appropriately.

LEMMA 4. Let u be a classical solution of (5). Let
1 m—1 2
P3:§(A u—alu) +P2

Suppose that a,,_1 =--- =ag = 0and ag > 0 in Q. If a; = constant > 0 and if

ag aq dn +4
2+2 —+201,24+ — ) < —/—m—m—
max { + stép @ +2a1,2 + 1 } (diam )2’

(14)
then, the function P3/w; assumes its maximum on 95 or is a constant in Q.
PROOF. A calculation gives

A ((;(Amlu —ayu)? + ;(Amlu)2>

> —2a0ulA™ ' 4 a1 AuA™ " + agagu®

2 1
= apa <u2 — ZuA™ 4 2(Amlu)2>
aq ay

- @(Amflu)z + a  AuA™ 1y
a1

ag

> (Amflu)Z o %(Au)2 o al(Amflu)Z

ai
in Q. It follows that
AP; > — (ZO +a; + 1) (A™1y)2 — 2(A™ %)% — - = 2(A%u)? —
1
(a1 2 2
(4 +2> (Au)® —u

in Q. Hence
AP3+’7P320 inQ,
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where v = max{2 + 2supq(ao/a1) + 2a1,2 + a1 /4}.
We now state our main result.

THEOREM 2. There is at most one classical solution of the boundary value problem
(2) provided the coefficients a,,—1,. .., ao satisfy the conditions imposed in Lemma 1,
Lemma 2, Lemma 3 or Lemma 4.

PROOF. Suppose that the hypothesis of Lemma 1 is satisfied. Define u = uy — us,
where u; and ug are solutions of (2). Then w; and ug satisfy the equation (5) and

u=Au=---=A""ty=0 ondQ. (15)

Hence, by Theorem 1 either
i). there exists a constant k € R such that

— =k inQ, (16)

or

ii). P;/w; does not attain a maximum in .

Case i). By continuity (16) holds in €. By the boundary conditions (15) we obtain
Py =0o0n 09, i.e., k=0. It follows that P; = 0 in €, which means v = 0 in Q2. Hence
Uy = ug in .

Case ii). From

Py Py
max — = max —

Q w1 o0 wq
and (15) we get

P,
0§m@x—1:0,
Q w1

ie., u; = ug in €.
We can argue similarly if we are under the hypotheses of Lemma 2, Lemma 3 or
Lemma 4. The proof is complete.

Of course, our method can also be applied to the problem (1) to get results in
arbitrary domains (2.
Next, we consider classical solutions of the equation

A*u+ az(2)A%u — az(2)Au + ag(z)u =0 in Q. (17)

LEMMA 5. Let u be a classical solution of (17). Assume that

az >0, A(l/az) <0 in Q, (18)
as >0, A(l/ag) <0 in Q, (19)
ags — 2&4 —1> O, A(l/(ag - 2&4 - 1)) S 0 in Q. (20)

If

1 a? - 2n + 2 (21)
max { sup as, sup —, su
Qp > Qp as’ Qp az —2a4 — 1 (diam Q)2’
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then, the function Pj/w; assumes its maximum on 952 or is a constant in ). Here

0@720,471
2

a2—2a4—1

P, = 5

(A3u+ Au)? + ag(A%u +u)? + (A%u)? + (Au)?

1

2
1 1

+§(A3u)2 + %(Azu)2 + §a4u2.

Under the hypotheses of Lemma 5, an uniqueness result follows for problem (1).
We note that this uniqueness result is not a particular result of Theorem 2. Moreover
we do not impose any convexity assumption on 0.

Finally, we give an application of the uniqueness result that follows from Lemma 5.
We see that the boundary value problem

Aty +4(2? + 92 + 3)A%u — (22 +y? + 3)? /D Au+ (2> + > +3)u =0 in Q
u=13/4, Au=4, A2u=0, A3u =0 on 01,

has the solution u(z,y) = 2% + y? + 3 in Q = {(z,y)[z* + y* < 1/4}.
Since (18), (19), (20) and (21) are satisfied, we get by the uniqueness result that
follows from Lemma 5 that u(z,y) = 22 + y? + 3 is the unique solution.

As our final remarks, for some domains we may improve the maximum principle,
i.e. the constant C(n,diam Q) = (4n + 4)/(diam Q) can be taken larger (see for details
[2] and [3]).
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