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Abstract
In this note we obtain explicit upper and lower bounds for the sum

P
0<
�T 


�1,
where 
 is the imaginary part of the non-trivial zero � = � + i
 of �(s).

1 Introduction

The Riemann zeta function is de�ned for s 2 C with <(s) > 1 by �(s) =
P1

n=1 n
�s,

and extended by analytic continuation to the whole complex plan with a simple pole
with residues 1 at s = 1. A symmetric functional equation for �(s) is
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s
2�
�s
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�
�(s) = ��

1�s
2 �

�
1� s
2

�
�(1� s);

where �(s) =
R1
0
e�tts�1dt is the Euler�s gamma function. �(s) is meromorphic with

simple poles at s = 0;�1;�2; ::: (see [3]). By using these facts, we may see that
trivial zeros (zeros on real line R) of �(s) are s = �2;�4;�6; ::: . Furthermore, we get
symmetry of non-trivial zeros (other zeros � = � + i
 with properties 0 � � � 1 and

 6= 0) with respect to the vertical line <(s) = 1=2. Our intention in writing this paper
is to approximate the function

A(T ) =
X

0<
�T
�(�+i
)=0

1



:

More precisely, we show the following.
THEOREM 1. Let 
1 = minf
 > 0 : �(� + i
) = 0g � 14:13472514. Then, for any

T > 
1 we have

3

50
< A(T )�

� 1
4�
log2 T � log(2�)

2�
log T

�
<
109

250
: (1)

Our strategy to prove this result is to consider the zero counting function N(T )
de�ned by

N(T ) =
X

0<
�T
�(�+i
)=0

1;
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and then translate known approximations about it to get desired approximations for
A(T ). The key for doing such translation is using Stieljes integration and integrating
by parts. Indeed, if we assume that 1 < U � V and �(t) 2 C1(U; V ) is a non-negative
function, then we have

X
U<
�V

�(
) =

Z V

U

�(t)dN(t) = �
Z V

U

N(t)�0(t)dt+N(V )�(V )�N(U)�(U):

Among his various conjectures about the function �(s) and its non-trivial zeros, B.
Riemann [5] claimed that

N(T ) =
T

2�
log

T

2�
� T

2�
+O(log T ): (2)

This conjecture of Riemann is proved by H. von Mangoldt more than 30 years later
[1, 2]. An immediate consequence of (2), which follows by partial summation, is the
asymptotic approximation

A(T ) = O(log2 T ):

To obtain a more precise approximation, we use the relation (2) by replacing �(
) = 1

 ,

and putting 0 < U < 
1 and V = T . We have

A(T ) =

Z T

U

dN(t)

t
=

Z T

U

N(t)

t2
dt+

N(T )

T
: (3)

We substitute N(T ) from (2) to obtain

A(T ) =
1

2�

Z T

U

log
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t
2�
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t

dt� 1

2�

Z T

U

dt
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T

�
:

Then, we simplify the right hand side of this relation, and we let U ! 
�1 . Therefore,
we get

A(T ) =
1

4�
log2 T � log(2�)

2�
log T +O(1):

Now, we are very close to the truth of Theorem 1. Our remaining duty is to estimate
the constant in error term O(1) in the last relation.

2 Proof of Theorem

The working engine of our paper is a result due to J. B. Rosser (Theorem 19 of [6]),
which asserts that

jN(T )� F (T )j � R(T ) (for T � 2); (4)

where

F (T ) =
T

2�
log

T

2�
� T

2�
+
7

8
; and R(T ) =

137

1000
log T +

433

1000
log log T +

397

250
:
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This is indeed an explicit version of (2), and it allows us to obtain some explicit ap-
proximations of A(T ). In fact, by considering (4) and by using (3) with 2 � U < 
1,
for every T > 
1 we obtain

�
Z T

U

R(t)

t2
dt+

F (T )�R(T )
T

� A(T )�
Z T

U

F (t)

t2
dt �

Z T

U

R(t)

t2
dt+

F (T ) +R(T )

T
:

A simple calculation shows

F (t)

t2
=
d

dt

�
1

4�
log2 t� 1 + log(2�)

2�
log t+

log2(2�)� 2 log(2�)
4�

� 7

8t

�
:

Also, we have

R(t)

t2
=
d

dt

�
� 433

1000

log log t

t
� 137

1000

log t

t
� 69

40t
� 433

1000
E(t)

�
;

where E(t) =
R1
1

ds
sts . This integral converges for t > 1; in fact E(t) �

1
t log t as t!1.

Moreover, by using the relation d
dtE(t) = �

1
t2 log t , we obtain

1

t log t
� 1

t log2 t
< E(t) <

1

t log t
� 31

95t log2 t
(for t � 2):

Therefore, by letting U ! 
�1 we get the following explicit upper bound

A(T ) <
1

4�
log2 T� log(2�)

2�
log T+cau�

137 log2 T + 433 log T � 433
1000T log2 T

(for T > 
1);

where cau = 0:43596427 � � � < 109
250 . Since 137 log2 T + 433 log T > 433 is valid for

T � 2:222, we obtain

A(T ) <
1

4�
log2 T � log(2�)

2�
log T +

109

250
(for T > 
1):

This completes the proof of the right hand side of (1). To prove the left hand side of
(1), we follow same steps to get

A(T ) >
1

4�
log2 T � log(2�)

2�
log T

+ cal +
274 log3 T + 866(log log T ) log2 T + 3313 log2 T + 433 log T � 433

1000T log2 T
;

for T > 
1, where cal = 0:06058187 � � � > 3
50 . We note that for T � 2 the last fraction

in the above inequality is strictly positive. Thus, we obtain

A(T ) >
1

4�
log2 T � log(2�)

2�
log T +

3

50
(for T > 
1):
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