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Abstract

New concepts for means, namely the stability and stabilizability, are intro-
duced in this paper. Applications of these new notions for standard means are
provided. At the end, open problems derived from the present work are stated.

1 Introduction

In the recent past, theory of means with scalar, operator and functional arguments has
extensive development and interesting applications. Such theory is an useful tool in
the theoretical point of view as well as for practical purposes.
The aim of this work is to introduce new concepts for means which we call stability

and stabilizability. These notions appeared to us in writing a recent paper about
the identric mean involving convex functional variables [10]. The original idea for
introducing these notions is explained in the following way. Let a and b be two positive
real numbers with a � b and de�ne a mean m(a; b) of a and b. Then we have a �
m(a; b) � b, and we can repeat the same by taking the mean of a and m(a; b) in a �rst
part and that of m(a; b) and b in a second part. It follows that

a � m (a;m(a; b)) � m(a; b) � m (m(a; b); b) � b:

Now, if we consider the positive real numbers m (a;m(a; b)) and m (m(a; b); b) and we
take their mean, a natural question then arises from this situation:

Question 1. Is it true that

m(a; b) = m
�
m
�
a;m(a; b)

�
;m
�
m(a; b); b

��
? (1)

The answer is clearly a¢ rmative for the arithmetic mean A, but no immediate
answer for the geometric, harmonic, logarithmic and identric means (which we denoted
by G;H;L; I, respectively, and we will recall their de�nitions in the next section).
A mean m which satis�es (1) will be called a stable mean. We prove that the three

familiar means A;G and H are stable while L and I are not stable.
Now, if in the above three steps the taken mean in each iteration is not necessary

the same, then the above question remains more di¢ cult. Precisely, let m1;m2 and m3
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160 Stability and Stabilizability for Means

be the taken means in the �rst, second and third step respectively, then we have the
following inequalities

a � m2

�
a;m1(a; b)

�
� m3

�
m2

�
a;m1(a; b)

�
;m2

�
m1(a; b); b

��
� m2

�
m1(a; b); b

�
� b;
(2)

a � m2

�
a;m1(a; b)

�
� m2(a; b) � m2

�
m1(a; b); b

�
� b; (3)

a � m2

�
a;m1(a; b)

�
� m1(a; b) � m2

�
m1(a; b); b

�
� b: (4)

Let us observe the above inequalities in the aim to introduce the following questions.

Question 2. According to (2) and (3), for which means m1;m2;m3 one has

m3

�
m2

�
a;m1(a; b)

�
;m2

�
m1(a; b); b

��
= m2(a; b)? (5)

If (5) is satis�ed, with m1 and m3 stable means, then we say that m2 is (m3;m1)-
stabilizable. With this, we will show that the logarithmic mean L is simultane-
ously (H;A)-stabilizable and (A;G)-stabilizable while the identric mean I is (G;A)-
stabilizable.

Question 3. By virtue of (2) and (4), is it possible to have

m3

�
m2

�
a;m1(a; b)

�
;m2

�
m1(a; b); b

��
= m1(a; b)? (6)

If (6) holds, the meanm1 will be called (m3;m2)-stabilized. As particular examples,
we prove that the geometric mean G is (A;H)-stabilized and (H;A)-stabilized, while
the Heron mean He, He := (1=2)A+ (1=2)G, is (A;G)-stabilized.
Our above concepts will also be applied for a game of power means. For instance, we

will prove that, for all real number p, the power binomial mean Bp is stable, the power
logarithmic mean Lp is (Bp; A)-stabilizable, the power di¤erence mean Dp is (A;Bp)-
stabilizable, the power exponential mean Ip is (G;Bp)-stabilizable and the second power
logarithmic mean lp is (Bp; G)-stabilizable (for the de�nition of these power means, see
the next section). At the end, we state a list of open problems as purposes for future
research.

2 Background Material

Throughout this paper, we understand by mean a binary map m between positive real
numbers satisfying the following statements:

(i) m(a; a) = a, for all a > 0;
(ii) m(a; b) = m(b; a), for all a; b > 0;
(iii) m(ta; tb) = tm(a; b), for all a; b; t > 0;
(iv) m(a; b) is an increasing function in a (and in b);
(v) m(a; b) is a continuous function of a and b.

The set of all means can be equipped with a partial ordering, called point-wise
order, de�ned by: m1 � m2 if and only if m1(a; b) � m2(a; b) for every a; b > 0.
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Two trivial means are (a; b) 7�! min(a; b) and (a; b) 7�! max(a; b), and every mean m
satis�es the following

min(a; b) � m(a; b) � max(a; b);

for all a; b > 0. We denote by min and max the above trivial means which we call lower
and upper means, respectively.
The standard examples of means satisfying the above requirements are recited in

the following.

� Arithmetic mean, A(a; b) = a+b
2 ;

� Geometric mean, G(a; b) =
p
ab;

� Harmonic mean, H(a; b) = 2ab
a+b ;

� Logarithmic mean, L(a; b) = b�a
ln b�ln a ; L(a; a) = a;

� Identric mean, I(a; b) = 1
e

�
bb

aa

�1=(b�a)
; I(a; a) = a;

� Quadratic mean, K(a; b) =
q

a2+b2

2 .

As is well known, these means satisfy the following inequalities

min � H � G � L � I � A � K � max :

For a given mean m, we set

m�(a; b) =
�
m
�
a�1; b�1

���1
;

and it is easy to see that m� is also a mean, called the dual mean of m. The symmetry
and homogeneity axioms (ii),(iii) yield

m�(a; b) =
ab

m(a; b)
:

It is easy to see that every mean m satis�es m�� = m, and if m1 and m2 are two means
such that m1 � m2 then m�

1 � m�
2. A mean m is called self-dual if m� = m. It is clear

that the arithmetic and harmonic means are mutually dual and the geometric mean is
the unique self-dual mean. The dual of the logarithmic mean is given by

L�(a; b) = ab
ln b� ln a
b� a ; L�(a; a) = a;

while that of the identric mean is

I�(a; b) = e

�
ab

ba

�1=(b�a)
; I�(a; a) = a:
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From the above, the following inequalities are immediate:

min � K� � H � I� � L� � G � L � I � A � K � max :

There are many families of means, called power means, which extend the above
standard ones. For instance, let p be a given real number, we recall the following:

� Power Binomial mean de�ned by

Bp(a; b) =

�
ap + bp

2

�1=p
:

This includes some of the most familiar means in the sense that:

B�1 : = lim
p!�1

Bp = min; B�1 = H; B1 = A;

B0 : = lim
p!0

Bp = G; B1 := lim
p!+1

Bp = max :

Notice that

B1=2(a; b) =
1

2

a+ b

2
+
1

2

p
ab := He(a; b)

is called the Heron mean. However, it is obvious that B�p = B�p for all real
number p.

� Power Logarithmic mean given by

Lp(a; b) =

�
ap+1 � bp+1
(p+ 1)(a� b)

�1=p
=

 
1

b� a

Z b

a

tpdt

!1=p
; Lp(a; a) = a:

Some particular special values of p are understood as:

L�1 = min; L�2 = G; L�1 = L; L0 = I; L1 = A; L1 = max :

Further, the following inequalities are immediate

Bp(a; b) � Lp(a; b) for p � 1; and Lp(a; b) � Bp(a; b) for p � 1:

� Power Di¤erence mean given by

Dp(a; b) =
p

p+ 1

ap+1 � bp+1
ap � bp ; Dp(a; a) = a:

As particular cases of interest, we cite the following:

D�1 = min; D�2 = H; D�1 = L
�; D�1=2 = G; D0 = L; D1 = A; D1 = max :

� Power Exponential mean de�ned by

Ip(a; b) = exp

�
�1
p
+
ap ln a� bp ln b

ap � bp

�
:

Particular cases are here included as well:

I�1 = min; I�1 = I
�; I0 = G; I1 = I; I+1 = max :
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� Second Power Logarithmic mean given by

lp(a; b) =

�
1

p

bp � ap
ln b� ln a

�1=p
:

In particular we have:

l�1 = min; l�1 = L
�; l0 = G; l1 = L; l+1 = max :

3 Resultant Mean-Map

We start this section by stating some basic notions that will be needed in the sequel.
We denote byM the convex set of all binary means (satisfying the above axioms (i)-
(v)). For integer k � 1, we consider a map � : Mk �! M i.e. � is a map with
mean-variables (which we call mean-map). We say that � is point-wise convex (in
short p-convex) if the following mean-inequality,

�
�
(1� t)M1 + tM2

�
� (1� t)�(M1) + t�(M2);

with respect to the point-wise ordering, holds true for every real number t 2 [0; 1] and
all mean-vectors M1 = (m1;m2; :::;mk) 2 Mk and M2 = (m

0

1;m
0

2; :::;m
0

k) 2 Mk. We
say that � is p-concave if the above inequality is reversed. A mean-map simultaneously
p-convex and p-concave, that is the above inequality is an equality, will be called p-
a¢ ne. Now, let us observe the following examples in the aim to illustrate the above
notions.

EXAMPLE 1. With the above, let k = 1 and the mean-map m 7�! m�, where m�

is the dual of m. It is not hard to verify that this mean-map is p-convex, that is,�
(1� t)m1 + tm2

��
� (1� t)m�

1 + tm
�
2

holds for all t 2 [0; 1] and all means m1 and m2.

EXAMPLE 2. Let k = 3 and consider the mean-map C de�ned by

C(m1;m2;m3) = m1(m2;m3);

in the sense that we have

C(m1;m2;m3)(a; b) = m1

�
m2(a; b);m3(a; b)

�
for all a; b > 0. As particular examples, we can take C(A;m1;m2) = (1=2)(m1 +m2)
and C(G;m1;m2) = (m1m2)

1=2. Otherwise, it is easy to see that, for �xed means m1

and m2, the mean-map m 7�! C(m;m1;m2) is p-a¢ ne.

We left to the reader the routine task of formulating some other examples of mean-
maps. However, a third example of mean-map having good properties and applications
is our aim in what follows.
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DEFINITION 1. Let m1;m2;m3 be given means. For all a; b > 0, de�ne

R(m1;m2;m3)(a; b) = m1

�
m2

�
a;m3(a; b)

�
;m2

�
m3(a; b); b

��
;

which we call the resultant mean-map of m1;m2 and m3.

Following the above, the map R is a mean-map with three mean-variables. The
elementary properties of R are summarized in the following results.

PROPOSITION 1. With the above, the following assertions are met:
(i) The map (a; b) 7�! R(a; b) := R(m1;m2;m3)(a; b) de�nes a mean, with the follow-
ing inequalities

min(a; b) � m2

�
a;m3(a; b)

�
� R(a; b) � m2

�
m3(a; b); b

�
� max(a; b):

(ii) For every means m1;m2;m3 we have�
R(m1;m2;m3)

��
= R(m�

1;m
�
2;m

�
3):

(iii) The mean-map R is point-wisely increasing with respect to each of its mean-
variables, that is,�

m1 � m
0

1; m2 � m
0

2; m3 � m
0

3;
�
=) R(m1;m2;m3) � R(m

0

1;m
0

2;m
0

3):

PROOF. (i) It is not hard to verify that R(m1;m2;m3) satis�es the axioms (i)-(v)
of a binary mean. Further, if a � b then a � m3(a; b) � b and so m2

�
a;m3(a; b)

�
�

m2

�
m3(a; b); b

�
. Then, the desired inequalities follow by the monotonicity axiom (iv)

of m1.
(ii) Apply the de�nition of R and that of the dual-mean. The desired result follows

after simple manipulations.
(iii) It is immediate from the de�nition of R with the monotonicity axiom (iv) for

m1;m2 and m3. The details are omitted for the reader.

Now, we will illustrate the above with some examples for computingR(m1;m2;m3),
when m1;m2 and m3 belong to the set of the familiar means. Such computations are
straightforward and so the details are omitted.

EXAMPLE 3. It is obvious that R(A;A;A) = A. By simple computations, we
verify that R(G;G;G) = G; R(H;H;H) = H and R(A;H;G) = R(H;A;G) = G.
Routine computations yield R(H;L;A) = R(A;L;G) = L and R(G; I;A) = I. As we
will see later, these relationships will be interpreted in a general point of view.

EXAMPLE 4. Simple computations lead to

R(H;H;A) =
�
1

2
A+

1

2
H

��
=

2AH

A+H
; R(H;A;A) = 3

4
A+

1

4
H; (7)

R(A;G;G) =
�
1

2
AG+

1

2
G2
�1=2

; R(A;A;G) = 1

2
A+

1

2
G; (8)
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R(G;G;A) =
p
AG; R(G;A;A) =

�
3

4
A2 +

1

4
G2
�1=2

: (9)

EXAMPLE 5. Let m1;m2;m be given means, it is not hard to verify the next
relationships

R(m1; G;m2)(a; b) = m1(
p
a;
p
b) (m2(a; b))

1=2
;

R(m1;m2; G)(a; b) = m1(
p
a;
p
b)m2(

p
a;
p
b);

R(Bp; Bp;m) = Bp(Bp;m) :=
�
Bpp +m

p

2

�1=p
:

The following result, whose the proof is straightforward, may be stated as well:

PROPOSITION 2. For all mean M , the mean-map m 7�! R(A;m;M) is p-a¢ ne,
that is, the following equality

R
�
A; (1� t)m+ tm

0
;M
�
= (1� t)R(A;m;M) + tR(A;m

0
;M)

holds for all real number t 2 [0; 1] and all means m;m0
.

4 Stable and Stabilizable Means

As already pointed before, the present section is devoted to introduce the stability and
stabilizability concepts. We may start with the following.

DEFINITION 2. A mean m is said to be stable if R(m;m;m) = m.
The above de�nition, when combined with Proposition 1 (ii) immediately gives the

following result.

PROPOSITION 3. If m is a stable mean then so is m�, that is,

R(m;m;m) = m() R(m�;m�;m�) = m�:

It is easy to see that the lower and upper means are stable. Other nontrivial
examples of stable means are given in the following result.

THEOREM 1. For all real number p, the power binomial mean Bp is stable. In
particular, the arithmetic, geometric, harmonic and quadratic means are stable.

PROOF. According to the explicit form of Bp, we easily verify thatR(Bp; Bp; Bp) =
Bp for all p 6= 0. Letting p = 0, in the sense p ! 0, with an argument of continuity,
we deduce the stability for G. Taking particular values of p, p = 1; p = �1; p = 1=2,
respectively, we obtain the stability of A;H and K. The proof is complete.

The reader can easily verify by a counter-example that the logarithmic and identric
means are not stable. For this, we may state another concept as recited in the following.

DEFINITION 3. A mean m is said to be: (i) Stabilized if there exist two nontrivial
stable means m1 and m2 such that R(m1;m2;m) = m. In this case we say that m
is (m1;m2)-stabilized. (ii) Stabilizable if there exist two nontrivial stable means m1
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and m2 satisfying the relation R(m1;m;m2) = m. We then say that m is (m1;m2)-
stabilizable.

In the above de�nition, the fact that the means m1 and m2 are nontrivial is nec-
essary, because if not, the de�nition will be without any interest since the relations
R(min;max;m) = m and R(min;m;max) = m are valid for every mean m. Other-
wise, it is clear that every nontrivial stable mean m is (m;m)-stabilizable and (m;m)-
stabilized.
The following result may be stated as well:

PROPOSITION 4. If m is (m1;m2)-stabilizable (resp., stabilized) then m� is
(m�

1;m
�
2)-stabilizable (resp., stabilized).

PROOF. Follows from the de�nition with Proposition 1 (ii).

As example of stabilized mean we can derive the following result.

THEOREM 2. For all nontrivial mean m, the geometric mean G is (m;m�)-
stabilized, that is to say, R(m;m�; G) = G.

PROOF. According to the second relationship of Example 5 we immediately obtain,
for all a; b > 0

R(m;m�; G)(a; b) = m
�p
a;
p
b
�
m�
�p
a;
p
b
�
:

This, with the fact that m(a; b)m�(a; b) = ab for all a; b > 0, yields

R(m;m�; G)(a; b) =
p
ab = G(a; b);

so proving the desired result.

The above theorem implies again that G is stable. Also, G is simultaneously (A;H)-
stabilized and (H;A)-stabilized. We left to the reader to verify that the Heron mean
He is (A;G)-stabilized.
In what follows, we will be interested by the stabilizability concept which, as we

will see, allows us to obtain good links between the standard means.

THEOREM 3. For all real number p, the power logarithmic mean Lp is (Bp; A)-
stabilizable, that is, the following equality

R(Bp; Lp; A) = Lp

holds for every real number p.

PROOF. According to the de�nition of R and the integral form of Lp we obtain,
for all a; b > 0 and p 6= 0,

R(Bp; Lp; A)(a; b) = Bp

�
Lp

�
a;
a+ b

2

�
; Lp

�
a+ b

2
; b

��

= Bp

0@ 2

b� a

Z (a+b)=2

a

tpdt

!1=p
;

 
2

b� a

Z b

(a+b)=2

tpdt

!1=p1A :
This, with the explicit form of Bp and a simple manipulation, gives the desired result for
p 6= 0. If p = 0, the same equality holds with an argument of continuity, so completes
the proof.
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COROLLARY 1. For all real number p, the dual power logarithmic mean L�p is
(B�p;H)-stabilizable.

PROOF. Follows from Theorem 3 with Proposition 1 (ii) and the fact that B�p =
B�p for all real number p.

As particular cases of interest, we can derive the following result.

COROLLARY 2. The logarithmic mean L is (H;A)-stabilizable while the identric
mean I is (G;A)-stabilizable. The dual logarithmic mean L� is (A;H)-stabilizable and
the dual identric mean I� is (G;H)-stabilizable.

PROOF. Setting p = �1, with L�1 = L; B�1 = H, Theorem 3 gives the �rst
part of the corollary. Letting p ! 0, with L0 = I; B0 = G and an argument of
continuity, we obtain the second part. The rest of the proof follows from the above
with Proposition 1 (ii), so completes the proof.

THEOREM 4. For all real number p, the power di¤erence mean Dp is (A;Bp)-
stabilizable.

PROOF. Writing Dp(a; b) in the following form

Dp(a; b) =
1

bp � ap
Z bp

ap
t1=pdt;

and by similar arguments as in the proof of Theorem 3, we deduce the desired result.
We omit the routine details.

Similarly to Corollary 1 and Corollary 2, we obtain the next result.

COROLLARY 3. For all real number p, the dual power di¤erence mean D�
p is

(H;B�p)-stabilizable.

Taking particular values of p, we may obtain the following.

COROLLARY 4. The logarithmic mean L is (A;G)-stabilizable and so L� is (H;G)-
stabilizable.

PROOF. Taking p = 0 (p! 0) in the above theorem we deduce the desired result
for L with help of an argument of continuity. This, with Proposition 1 (ii), gives the
result for L�.

REMARK 1. Corollary 2 and Corollary 4 imply that the logarithmic mean L is
simultaneously (H;A)-stabilizable and (A;G)-stabilizable, and, L� is simultaneously
(A;H)-stabilizable and (H;G)-stabilizable. We deduce that a given mean m can
be (m1;m2)-stabilizable and (m

0

1;m
0

2)-stabilizable for distinct couples (m1;m2) and
(m

0

1;m
0

2) of stable means. The reverse situation is an open question, see the next
section below.

THEOREM 5. The power exponential mean Ip is (G;Bp)-stabilizable.

PROOF. Here, we write Ip(a; b) in the next form

Ip(a; b) = exp

 
1

p(bp � ap)

Z bp

ap
lnt dt

!
;

and the proof is similar to that of the above theorems.
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THEOREM 6. The second power logarithmic mean lp is (Bp; G)-stabilizable.

PROOF. We write lp(a; b) in the following integral form

lp(a; b) =

 
1

ln b� ln a

Z b

a

tp�1dt

!1=p
:

By de�nition we have

R(Bp; lp; G)(a; b)

= Bp

�
lp(a;

p
ab); lp(

p
ab; b)

�
= Bp

0@ 2

ln b� ln a

Z p
ab

a

tp�1dt

!1=p
;

 
2

ln b� ln a

Z b

p
ab

tp�1dt

!1=p1A :
Using the explicit form of Bp we deduce the desired result after a simple reduction.

REMARK 2. Taking p = �2 in Theorem 4 we deduce that the harmonic mean
H is (A;K�)-stabilizable. Setting p = �1=2 in the same theorem we �nd that the
geometric mean G is (A;H�

e )-stabilizable, and by Proposition 1 (ii) we deduce that G
is also (H;He)-stabilizable. In fact, these results are without any greatest interest in a
practical context, since the expression of H (resp., G) is more simple than that of K�

(resp., He). However, in the theoretical context this shows that the above Remark 1
holds true even for a stable mean m.
Summarizing the above, the stabilizability notion of the standards means L;L�; I; I�

turns out of the stable means A;G;H. Further, we remark that A;G;H have simple
(algebraic) forms while L;L�; I; I� are with transcendant expressions. Moreover, the
stabilizability of the power means Bp; Lp; Dp; Ip; lp (and their associate dual means)
turns out of the stable power binomial mean Bp. This allows us to arise the following
question: Is it possible to characterize a (m1;m2)-stabilizable mean m in terms of its
related couple (m1;m2)? For more details, see the section below.
We end this section by noticing that, to �nd a meanm which is (m1;m2)-stabilizable

can be generally reduced to a functional equation. Indeed, assume that we would like to
search a mean m that is (A;G)-stabilizable. Following Corollary 4, this mean m is the
logarithmic mean L. However, starting from the de�nition, that is R(A;m;G) = m,
we obtain after reduction

8a; b > 0 m(a;
p
ab) +m(

p
ab; b) = 2m(a; b):

According to the homogeneity axiom, it is su¢ cient to research m(a; 1) for every a > 0,
and the above relationship is then reduced to the following one

8a > 0
p
am(

p
a; 1) +m(

p
a; 1) = 2m(a; 1);

or again
8a > 0 (

p
a+ 1)m(

p
a; 1) = 2m(a; 1):
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Our problem can be transformed into the following: Prove or disprove the existence of
an increasing continuous function f on ]0;+1[ such that

8x > 0 f(x) > 0; 2f(x2) = (x+ 1)f(x); f(1) = 1: (10)

Further, we can ask if it is possible to explicit f(x).
Following Corollary 4, the function f(x) = x�1

ln x , with f(1) = 1, is a solution of (10).
The question "how to obtain directly the set of all solutions of (10)" is not obvious and
appears to be interesting. We conjecture that equation (10) has only the above solution,
or in another way, we conjecture that L is the unique mean which is (A;G)-stabilizable.
In a general point of view, see section below (Conjecture 2).

5 Some Extensions and Open Problems

In this section, we display some extensions of the above notions and results from the
case that the means are with scalar variables to the case that the means are with
operator or functional variables. To not lengthen this section, we just mention that
the stability and stabilizability notions, already stated for scalar means, can be easily
extended in a similar manner for means with operator or functional arguments.
The present section will be divided into subsections as we organize in the following.

5.1 Complements

In what previous, we have seen that, the logarithmic mean L is (H;A)-stabilizable and
(A;G)-stabilizable, its dual L� is (A;H)- stabilizable and (H;G)-stabilizable, with the
inequalities H � L� � G � L � A. The identric mean I is (G;A)-stabilizable, its dual
I� is (G;H)-stabilizable, with H � I� � G � I � A. Our �rst open problem can be
conjectured as follows.

Conjecture 1. Let m1 and m2 be two means such that m1 � m2. If m is a
(m1;m2)-stabilizable mean (resp., (m2;m1)-stabilizable mean) then we have m1 �
m � m2.

Furthermore, we have seen that a given mean m can be simultaneously (m1;m2)-
stabilizable and (m

0

1;m
0

2)-stabilizable for di¤erent couples (m1;m2) and (m
0

1;m
0

2) of
stables means. For the reverse statement, we haven�t any a¢ rmative answer and we
put our second conjecture.

Conjecture 2. Let m1 and m2 be two means such that m1 � m2. Then, there
exists one and only one mean m which is (m1;m2)-stabilizable and satisfying that
m1 � m � m2.

Conversely, we can ask if every given mean is stabilizable? We may put the follow-
ing.
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Conjecture 3. There are many means which are not stabilizable. For instance,
we think that the following mean

P (a; b) =
b� a

4 arctan
p
b=a� �

; P (a; a) = a;

known in the literature as the Sei¤ert�s mean [11], is not stabilizable.

5.2 Link between Cross Means and Stable Means

In [9] the author introduced the notion of cross means as recalled in the following.

DEFINITION 3. Let m1 and m2 be two means. The tensor product of m1 and m2

is the map m1 
m2 de�ned by

8a; b; c; d > 0 m1 
m2(a; b; c; d) = m1

�
m2(a; b);m2(c; d)

�
:

A binary mean m will be called cross mean if m
2 := m 
 m is a mean with four
variables, that is,

8a; b; c; d > 0 m
2(a; b; c; d) = m
2(a; c; b; d):

The author proved [9] that the power binomial mean Bp is a cross mean while
the power logarithmic mean Lp and di¤erence mean Dp are not always cross means.
Further, he proved that Lp and Dp can be approached by recursive algorithms involving
the cross mean Bp. The notion of cross mean is stronger than the stability notion as
proved in the following.

THEOREM 7. Every cross mean is a stable mean.

PROOF. Let m be a mean, we have by de�nition

R(m;m;m)(a; b) = m
�
m
�
a;m(a; b)

�
;m
�
b;m(a; b)

��
= m
2

�
a;m(a; b); b;m(a; b)

�
:

If m is a cross mean, it becomes that

R(m;m;m)(a; b) = m
2
�
a; b;m(a; b);m(a; b)

�
= m

�
m(a; b);m(a; b)

�
= m(a; b);

which concludes the proof.

However, we don�t know if the reverse of the above theorem is true. Precisely, we
put the following.

Problem 1. Prove or disprove that every stable mean is a cross mean.

5.3 Means of Order (p; q)

Let p; q 2 R and a; b > 0. We recall the following.
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� The Stolarsky mean Ep;q(a; b) of order (p; q) of a and b is de�ned by [12, 13].

Ep;q(a; b) =

�
p

q

bq � aq
bp � ap

�1=(q�p)
; Ep;q(a; a) = a:

This includes some of the most familiar cases in the sense

Ep;p(a; b) = exp

�
�1
p
+
ap ln a� bp ln b

ap � bp

�
; Ep;0(a; b) =

�
1

p

bp � ap
ln b� ln a

�1=p
if p 6= 0, with E0;0(a; b) = G(a; b). The mean Ep;q extends the power binomial,
logarithmic and di¤erence means, since the following relations

Ep;2p = Bp; E1;p+1 = Lp; Ep;p+1 = Dp

hold for all real number p.

� The Gini mean Gp;q(a; b) of order (p; q) of a and b is de�ned by [3]

Gp;q(a; b) =

�
aq + bq

ap + bp

�1=(q�p)
:

Clearly, G0;p = Bp for all real number p. Now, we are in position to put the
following.

Problem 2. Determine the set of all couples (p; q) such that the mean Ep;q (resp.,
Gp;q) is stable (resp., stabilizable).

5.4 Operator Means

The extension of means from the case that the variables are positive real numbers to
the case that the variables are positive operators has extensive several developments,
see [7] and the related references cited therein. Let T and S be two positive operators
acting from a Hilbert space E into its self. We recall that the arithmetic and harmonic
operator means are, respectively, de�ned by

A(T; S) = T + S

2
; H(T; S) =

�
A
�
T�1; S�1

���1
= 2
�
T�1 + S�1

��1
;

with T�1 = lim�#0
�
T + �I

��1
for the sake of convenience.

In the literature, there are two analogues of the scalar geometric mean G(a; b) :=p
ab for operator variables. The �rst is the monotone geometric operator mean de�ned

by

G(T; S) = T 1=2
�
T�1=2ST�1=2

�1=2
T 1=2;

and the second is the chaotic geometric operator mean given by

CG(T; S) = exp
�1
2
log T +

1

2
logS

�
:
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As well known, CG(T; S) and G(T; S) are in general di¤erent.
Analogously to the standard case, the power binomial operator mean Bp is de�ned

by

Bp(T; S) =
�T p + Sp

2

�1=p
:

This family includes the following operator means,

B1(T; S) = A(T; S); B�1(T; S) = H(T; S); B0(T; S) = lim
p!0

Bp(T; S) = CG(T; S):

THEOREM 7. For all real number p, the binomial operator mean Bp is stable. In
particular, the arithmetic, harmonic and chaotic geometric operator means are stable.

PROOF. Similar to that of the above scalar case. We omit the routine details.

Throughout the above, we have seen that the scalar geometric mean G is stable,
(H;He)-stabilizable and (A;H�

e )-stabilizable. Since G is an extension of the scalar
geometric mean G, it is natural to put the following.

Problem 3. Prove or disprove that the monotone geometric operator mean G is
stable or stabilizable.

The power logarithmic operator mean, extending the scalar one, is de�ned by,

Lp(T; S) =
�Z 1

0

�
(1� t)T + tS

�p
dt
�1=p

:

Clearly, L1(T; S) = A(T; S). Further, more familiar operator means are here included,
in particular the following:

L�1(T; S) =
�Z 1

0

�
(1� t)T + tS

��1
dt
��1

:= L(T; S)

called the monotone logarithmic operator mean, and

L0(T; S) = exp
Z 1

0

log
�
(1� t)T + tS

�
dt := I(T; S)

called the chaotic identric operator mean. For some details about this class of operator
means, we refer the reader to [7] and the references cited therein.

After this, and following our above study, it is natural to put the following problem.

Problem 4. Prove or disprove that the power logarithmic operator mean Lp is
(Bp; A)-stabilizable.

5.5 Functional Means

Recently, some functional means have been introduced in the literature. Such functional
means extend the operator ones in the sense that ifM(T; S) is an operator mean, its
extension M for means with functional variables satis�es the following relationship, see
[1, 2, 4, 5, 6, 8]

M(fT ; fS) = fM(T;S);
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where the notation fT refers to the quadratic function associated to the operator T
de�ned from a Hilbert E into itself, i.e. fT (x) = (1=2) < Tx; x > for all x 2 E.

The convex functional means (also called functional means in convex analysis) have
been introduced at the �rst time by Atteia-Raïssouli in [1]. Throughout in what follows,
let f; g : E �! R [ f+1g be such that dom f \ dom g 6= ;, where dom f stands for
the e¤ective domain of f de�ned by dom f = fx 2 E; f(x) < +1g. The arithmetic
and harmonic functional means of f and g are, respectively, de�ned by

A(f; g) =
f + g

2
; H(f; g) =

�1
2
f� +

1

2
g�
��
;

where f� denotes the Legendre-Fenchel conjugate of f de�ned as follows

8x� 2 E f�(x�) := sup
x2E

f< x�; x > �f(x)g:

THEOREM 8. The arithmetic and harmonic functional means are stable.

PROOF. It is straightforward and the detail is left to the reader as a simple exercise.

The Geometric functional mean of f and g, denoted here byG, was �rstly introduced
as the point-wise limit of an iterative process descending from the arithmetic and
harmonic functional means. Precisely, for given functionals f and g, we recall the
following algorithm, [1].

�n+1(f; g) =
1

2
�n(f; g) +

1

2

�
�n(f

�; g�)
��
; n � 0; �0(f; g) = A(f; g):

The sequence
�
�n(f; g)

�
n
converges point-wisely to a convex function G(f; g) called

the convex geometric functional mean of f and g. For the elementary properties of
G(f; g), the reader can consult [1]. For another equivalent de�nition of G(f; g), see
also [2].
We are in position to state our open problem for functional mean recited as follows.

Problem 5. Prove or disprove that the geometric functional mean G is stable or
stabilizable.

The logarithmic mean of two convex functionals has been introduced by the author
in [6]. This functional mean extends, at a new angle, that of positive real numbers
and positive operators already stated in the literature. Precisely, let f; g be such that
dom f \ dom g 6= ;. We put

L(f; g) =
�Z 1

0

(t:f + (1� t):g)�dt
��
;

which is called the logarithmic functional mean of f and g in the sense of convex
analysis.
Of course, the functional logarithmic mean is not stable, since it is an extension of

the scalar one which is not stable. However, it is natural to state the following.

Problem 6. Prove or disprove that the logarithmic functional mean L is (H;A)-
stabilizable and/or (A;G)-stabilizable.
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