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Abstract
The aim of this paper is to improve the Burnside formula for approximation
the gamma function.

1 Introduction

The Euler gamma function defined for = > 0 by

F(x):/ t*le~tat
0

extends the factorial function and it is of great interest in many branches of science.
Undoubtedly, one of the most used formula for approximation the big factorials is the

following
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now known as Stirling formula. Although in probabilities or statistical physics this
formula is satisfactory, in pure mathematics more accurate formulas are necessary.
Recently Mortici [4] introduced the approximation

F(n+1)~\/?<”:1)n+é, (2)

being slightly less accurate than Burnside formula [1]

= 0. (3)
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Inspired by the Lanczos integral approximations [3] and by a double series representa-
tion of Hsu [2], Mortici [4] unified the relations (1)-(2) in the following general approx-
imations family

n—i—%
F(n—i—l)%\/ﬁe_p(n:p) 0<p<1). (4)
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As the privileged values w = (3 — \/g) /6, ¢ = (3 + \/§) /6 provide the best results,
there are proven in [4] the following sharp inequalities

$+% m—‘—%
V2mee v (m+w> <I'(z+1) <a-V2ree ™™ (x+w>

e
and
C+3

C+3
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where o = 1.072042464... and § = 0.988503589... .
Other recent results about the gamma function and related functions are stated in

[5]-[17].

2 The Results

In this paper we continue the direction opened by the family (4) and in particular by
the Burnside approximation (3) by replacing the constant 1/2 by a quantity depending
on n, which tends to 1/2, as n — oc.

More precisely, we propose the following under-approximation

+1_ 1 \"t2
Pn+1)~V2r <w> = Up,
e

and upper-approximation

1
R A N
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The superiority of our new formulas over the Stirling and Burnside formulas are proved
in the following table.

n nl—oy B, —n! nl—wv, thy, — n!
10 30104 14421 730 25
25 5.1615 x 1022 2.5364 x 10%2 5.1001 x 1020 7.054 x 1018

2.5172 x 10°°

1.7305 x 10°7

50 5.0647 x 10°T 2.5104 x 10%1

100 | 7.7739 x 10™% | 3.8700 x 10™% | 1.9377 x 10752 | 6.6405 x 1049
500 | 2.0334 x 101130 [ 1.0158 x 101130 [ 1.0161 x 101127 | 6.9475 x 101123
1000 | 3.3531 x 10?553 | 1.6758 x 102553 | 8.3802 x 1025°9 | 2.8641 x 10%°6

We prove the following.
THEOREM 1. For every positive integer n, we have

n+i 1
n+i_ L 2 n+ i
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PROOF. Let us define the sequences

1 +1_ 1
anp=InT (n+1)— (n+2) In (w) —Inv2r
e

1 411 4 1
bn:lnF(n—i—l)—(n—l—Z)ln(n R 48"2)—ln\/27r

e

which converge to zero. In order to prove that a,, > 0 and b,, < 0, we show that a,
is strictly decreasing and b, is strictly increasing. In this sense, if designate f (n) =
an+1— an and g (n) = byy1 — by, it suffices to show that f (z) < 0 and g (x) > 0, where

T+ 3 - s 11
f@)=n(z+1) - x—|—§ 2 24@rD ) x—f—} In T3~ s
2 2
€ e
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We have f” () <0 and ¢” (z) > 0, for every = € [1,00), since

g(m)ln(m+1)<x+2>ln< 2 240+ 48($+1)2>

fl/ (ZE) — P (x)
202 (z + 1)° (122 + 2422 — 1)® (60z + 2422 + 35)°
and
§" () = Q(z)

22 (z + 1) (2422 — 2z + 4823 + 1)* (1902 + 16822 + 4823 + 71)*’
where

P (z) = 23975z + 27946022 + 1166 4002° + 2468 928x*

42764 8002° + 1541 37625 + 331 77627 + 1225 (v — 1)

and

Q (z) = 6816z + 281 16922 + 3569 048z° + 17562 852z + 46 653 6962 + 74 884 57625

+75056 64027 + 45 988 6082 4 15704 06427 + 2267 1362'° + 5041.

Finally, f is strictly concave, g is strictly convex, with f (00) = g(c0) = 0,50 f <0
and g > 0 and the theorem is proved.
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