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Abstract

Let A and B be square matrices of dimension 2 with real entries and r > 0.
We consider the system

�X(t) = AX(t) +BX(t� r); t � �r;

with X speci�ed on the interval [�r; 0]. We assume that the system is irreducible
in the sense that the matrix A has a single eigenvalue. We give an explicit formula
for the general solution of the system by determining a fundamental matrix for
the system.

1 Introduction

Ordinary di¤erential equations (in one or several dimensions) are commonly used to
model dynamical systems. It is known however that the evolution of real world systems
always depends in some way on part or all of their own history. Therefore Delay
Di¤erential Equations are preferable as models of such systems. For this reason, there
has been active research on the theory of these equations in the recent past. A detailed
review of research on the subject and its applicability can be found in Farshid and
Ulsoy [2] and Ruan and Wei [8] and the references cited therein.
This research deals mainly with questions of stability and other asymptotic aspects

of solutions (see e.g. Pontryagin [7], Hayes [4], Noonburg [6] etc. and the references
cited therein). In the multidimensional setting, these studies are done without any
knowledge of explicit representations of the solutions in question. On the other hand,
knowledge of explicit formulas for solutions of such systems would potentially ease
some of the problems involved in studying them. In particular, it is then easy to write
computer programmes for the study of properties of solutions.
Our aim in the present paper is to give a closed formula for the solution of a

two dimensional linear system of Delay Di¤erential Equations, under an irreducibility
assumption.
We consider the following two dimensional Delay Di¤erential System with real co-

e¢ cients:

�x(t) = a11x(t) + a12y(t) + b11x(t� r) + b12y(t� r); t � 0 (1)
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262 Explicit Solutions of Irreducible Linear Systems

�y(t) = a21x(t) + a22y(t) + b21x(t� r) + b22y(t� r); t � 0 (2)

x(t) = x1(t); t 2 [�r; 0] (3)

y(t) = y1(t); t 2 [�r; 0]; (4)

where x1 and y1 are given functions and r > 0. We give a closed formula for the
solution of this system when the matrix A = (aij) has a single eigenvalue and the
functions x1 and y1 are integrable.
The results we present here also generalize some results which appear in [3], [5] etc.

in the one dimensional setting. In addition, the fundamental matrix which we obtain
here reduces to that known in the case of systems of ordinary di¤erential equations, if
the Delay Di¤erential System has zero delay.
The rest of the paper is organized as follows: In Section 2 we introduce de�nitions.

We also prove a number of technical Lemmas which we use in Section 3. Our main
results Theorem 1 and Theorem 2 are presented in Section 3. The main step in the
proof of these theorems is Lemma 6. Other results are Corollaries to these Theorems.
We note that the results we obtain here can not be extended trivially to systems for
which the matrix A = (aij) has two distinct eigenvalues.

2 Prerequisites

DEFINITION 1. A vector valued function (x(t) y(t))Tt��r(T denoting the transpose)
with values in R2 is called a solution of (1-4) if it is continuous, satis�es (1-2) Lebesgue
almost everywhere on [0;1) and (3-4).
The system (1-4) can be rewritten as

�X(t) = AX(t) +BX(t� r); t � 0 (5)

X(t) = (x1(t) y1(t))
T ; t 2 [�r; 0] (6)

where X = (x y)T ; A = (aij) and B = (bij): We assume that the matrices A and B
have real coe¢ cients and A is not diagonalizable or is diagonalizable but has a single
eigenvalue. In this case, there exists an invertible matrix Q such that

Q�1AQ = D; where D = (dij)ij2f1;2g with d11 = d22 = � ; d12 = � ; d21 = 0; (7)

� 2 C, � = 1 if A is not diagonalizable and � = 0 otherwise. We shall use the symbol
0 for the real number 0, the zero vector in R2 and the zero matrix in M(2; 2;R),
where M(2; 2;R) denotes the set of real 2 � 2 matrices. We use the symbol E for
the multiplicative identity in M(2; 2;R). Let Z := Q�1X; H := Q�1BQ; then the
solution of the system (5-6) is X := QZ where Z solves the system

�Z(t) = DZ(t) +HZ(t� r); t � 0 (8)

Z(t) = Q�1(x1(t) y1(t))
T ; t 2 [�r; 0]: (9)

We now introduce the following de�nition:
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DEFINITION 2. We call the function G : [0;1) ! M(2; 2;R) the fundamental
matrix associated with (5) if for any � 2 R2,

X(t) :=

�
G(t)� : t 2 [0;1)
�1f0g(t) : t 2 [�r; 0]

is a solution of (5) with initial condition X(t) = �1f0g(t); t 2 [�r; 0]. Our �rst

observation is the following Lemma which uses the notation in (7):

LEMMA 1. Let D be the matrix in (7) and H 2 M(2; 2;R), g : [�r; 0] ! R2 be
continuous at least on [�r; 0) and bounded on [�r; 0]. Let Z(t) := g(t); t 2 [�r; 0].
For t 2 [kr; (k + 1)r); k = 0; 1; 2; : : : ; let

Z(t) := e�(t�kr)(E+(t�kr)M)Z(kr)+H
tZ

kr

 (s; t)ds+(MH)

tZ
kr

sZ
kr

 (u; t)duds; (10)

where
Z(kr) := lim

t"kr
Z(t); k = 1; 2; : : : ; (11)

M :=

�
0 �
0 0

�
and  (v; w) := e�(w�v)Z(v � r); v; w 2 R; (12)

then

(i) Z is continuous on [0;1)

(ii) Z is di¤erentiable on [kr; (k + 1)r), k = 0; 1; 2; : : :, where the derivative at the
point kr is understood to be the derivative on the right.

(iii) for k = 0; 1; 2; : : :,
�Z(t) = DZ(t) +HZ(t� r) (13)

for t 2 [kr; (k + 1)r) and
Z(t) = Z(kr) (14)

for t = kr.

PROOF. (i) and (ii) follow from the assumptions on g and the de�nition of Z.
Note that by our assumption, s 7! Z(s � r) need not be continuous from the left at
the point r and hence t 7! Z(t) need not be di¤erentiable on the left at r.
(iii) We now show that (13) and (14) hold. For t = kr, the right hand side of (10)

is Z(kr) and hence (14) is satis�ed. On (kr; (k + 1)r);

�Z(t) = �e�(t�kr)(E + (t� kr)M)Z(kr) + e�(t�kr)MZ(kr)

+H�

tZ
kr

 (s; t)ds+HZ(t� r) + �(MH)

tZ
kr

sZ
kr

 (u; t)duds
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+(MH)

tZ
kr

 (u; t)du

= �E

0@e�(t�kr)(E + (t� kr)M)Z(kr) +H tZ
kr

 (s; t)ds+ (MH)

tZ
kr

sZ
kr

 (u; t)duds

1A
+

0@e�(t�kr)MZ(kr) + (MH)

tZ
kr

 (s; t)ds

1A+HZ(t� r)
= �EZ(t) +MZ(t) +HZ(t� r) = DZ(t) +HZ(t� r):

Further, by computing the limit lim
h!0

h>0

Z(kr+h)�Z(kr)
h , it is seen that the derivative on the

right at kr exists and �Z(kr) = DZ(kr) +HZ(kr � r). Therefore (13) holds.
In what follows, M shall denote the matrix in (12) and H an arbitrary element

of M(2; 2;R). Lemma 1 shows that (10-11) is a solution of the system (8-9) with
Q�1(x1(t) y1(t))

T = g(t). It also shows that when we solve the system on successive
intervals [kr; (k + 1)r), products of H, M and (MH) will appear in the solution. In
the remainder of this section, we give those properties of these products which we will
use in the sequel. For this purpose, we introduce some notation.

We de�ne p(E) := 0, p(H) := p(M) := 1; x0 := E and write xm for
m�z }| {

x � � �x; x 2
M(2; 2;R). If n � 1, xi 2 fH;M;Eg; i = 1; : : : ; n, then we de�ne p(x1 � � �xn) :=
nP
i=1

p(xi). p(x) is the number of times that the matrices M and H appear as factors in

the given factorization of x over fM;H;Eg. Hence althoughM3 =M2 = 0, p(M3) = 3
and p(M2) = 2. If n � 1; x := x1 � � �xn = 0 where xi 2 fM;H;Eg; i = 1; : : : ; n, then
we call x a zero.
If a set contains one or more zeroes, then all the zeroes shall be represented by

the single symbol 0. Thus for sets A and C, A = fx; 0g says that the set A contains
at least one zero, apart from the element x and A = C [ f0g says that A is the union
of two sets- C and another set which contains one or more elements all of which are
zeroes. Note that C may also contain zeroes. Therefore for our purposes, the set
fE;M2;M3g [ fM4;M5g can be written as fE; 0g [ f0g. For x 2 M(2; 2;R), let Tx
denote the linear transformation on M(2; 2;R) de�ned by Tx(y) = xy; y 2 M(2; 2;R),
Tx(A) := fTx(y) : y 2 Ag, A �M(2; 2;R) and for j 2 f0; 1g and k � 0, de�ne

Ijk :=

�
fEg : k = 0
T(MjH)(Ik�1) : k � 1 ; Ik := I0k [ I1k :

LEMMA 2. For k � 1,
TM (Ik) = I1k [ f0g: (15)

PROOF. Since TM (I1k) = f0g, TM (Ik) = TM (I
0
k) [ f0g = TM (TH(Ik�1)) [ f0g =

T(MH)(Ik�1) [ f0g = I1k [ f0g.
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LEMMA 3. For k � 1, minfp(x) : x 2 Ikg = minfp(x) : x 2 I0kg and maxfp(x) :
x 2 Ikg = maxfp(x) : x 2 I1kg:
PROOF. Ik = TH(Ik�1) [ T(MH)(Ik�1) = fHx : x 2 Ik�1g [ f(MH)x : x 2 Ik�1g,

hence minfp(x) : x 2 Ikg = minfp(Hx) : x 2 Ik�1g = minfp(x) : x 2 I0kg. The proof
that maxfp(x) : x 2 Ikg = maxfp(x) : x 2 I1kg is similar.
REMARK 1. The assertion of Lemma 3 is also true for k = 0.

LEMMA 4. Let k � 1 then minfp(x) : x 2 Ikg = k and maxfp(x) : x 2 Ikg = 2k.
PROOF. If k = 1, then I1 = fH; (MH)g and hence since p(H) = 1 and p(MH) = 2,

we have 1 = minfp(x) : x 2 I1g = k and 2 = maxfp(x) : x 2 I1g. Assume that the
assertion is true for k = m. For k = m+ 1, we have by Lemma 3 and the assumption
of the induction that

minfp(x) : x 2 Im+1g = minfp(x) : x 2 I0m+1g
= minfp(x) : x 2 TH(Im)g
= 1 +minfp(x) : x 2 Img = m+ 1:

The proof that maxfp(x) : x 2 Ikg = 2k is similar.
REMARK 2. The assertion of Lemma 4 is also true for k = 0.

From Lemma 4 we have the following Corollary:

COROLLARY 1. Let k � 1 then maxfp(x) : x 2 I0kg = 2k � 1 and minfp(x) : x 2
I1kg = k + 1.

PROOF. minfp(x) : x 2 I1kg = minfp(x) : x 2 T(MH)(Ik�1)g = 2 + minfp(x) :
x 2 Ik�1g = k + 1, where the last equality follows from Lemma 4. The proof that
maxfp(x) : x 2 I0kg = 2k � 1 is similar.
REMARK 3. Lemma 4 implies that for k � 1, fx 2 Ik : p(x) � k � 1g = ;

and fx 2 Ik : p(x) � 2k + 1g = ;. Also, from Lemma 3 and Lemma 4, for k � 1,
minfp(x) : x 2 I0kg = k and maxfp(x) : x 2 I1kg = 2k. This and Corollary 1 imply that
the following sets are empty: fx 2 I0k : p(x) � k � 1g; fx 2 I0k : p(x) � 2kg;
fx 2 I1k : p(x) � kg; fx 2 I1k : p(x) � 2k + 1g:
LEMMA 5. For k � 1, fx 2 I0k : p(x) = lg is nonempty for k � l � 2k � 1 and

fx 2 I1k : p(x) = lg is nonempty for k + 1 � l � 2k.
PROOF. If k = 1, then I01 = fHg; I11 = f(MH)g and the assertion is easily veri�ed.

Let the statement be true for k = m � 2. We now show that it is true for k = m+ 1

fx 2 I0m+1 : p(x) = lg = fx 2 TH(Im) : p(x) = lg
= TH(fx 2 I0m : p(x) = l � 1g) [ TH(fx 2 I1m : p(x) = l � 1g):

By the assumption of the induction, fx 2 I0m : p(x) = l � 1g is non-empty for l =
m + 1; : : : ; 2m. Therefore TH(fx 2 I0m : p(x) = l � 1g) 6= ;; l = m + 1; : : : ; 2m. A
similar argument shows that TH(fx 2 I1m : p(x) = l � 1g) 6= ;; l = m+ 2; : : : ; 2m+ 1.
Consequently fx 2 I0m+1 : p(x) = lg 6= ;; l = m + 1; : : : ; 2m + 1; proving the �rst
assertion. The second assertion is proven similarly.
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REMARK 4. (i) For l � 1; k � 1, let U lk := fx 2 Ik : p(x) = lg, then from Remark
3 and Lemma 5, Ik = [fU lk : l = k; : : : ; 2kg - a disjoint union of non-empty sets and
U lk = ;; l � k � 1 or l � 2k + 1. By (15) and Lemma 5,

TM (fx 2 Ik : p(x) = lg) =
�
fx 2 I1k : p(x) = l + 1g : l = k;
fx 2 I1k : p(x) = l + 1g [ f0g : k < l � 2k � 1:

(16)
Also note that TM (fx 2 Ik : p(x) = 2kg) = TM ((MH)k) = f0g. Therefore

TM (fx 2 Ik : p(x) = lg) =

8>><>>:
fx 2 I1k : p(x) = l + 1g : l = k;
fx 2 I1k : p(x) = l + 1g [ f0g : k < l � 2k � 1;
f0g : l = 2k;
; : l � k � 1 or l � 2k + 1:

(17)
(ii) It follows from Lemma 5 and Remark 3 that for k � 2,

(a) TH(fx 2 Ik�1 : p(x) = lg) =
�
fx 2 I0k : p(x) = l + 1g : k � 1 � l � 2k � 2;
; : otherwise.

and

(b) T(MH)(fx 2 Ik�1 : p(x) = lg) =
�
fx 2 I1k : p(x) = l + 2g : k � 1 � l � 2k � 2;
; : otherwise.

It is easy to check that (a) and (b) also hold for k = 1.

3 The Fundamental Matrix and Solutions of DDSs

The matrices D and H in this section are as in Lemma 1.

LEMMA 6. The system

�Y (t) = DY (t) +HY (t� r); t � 0
Y (t) = z1f0g(t); t 2 [�r; 0]; z 2 R2

admits a unique solution given by

Y (t) :=

8><>:
z1f0g(t) : t 2 [�r; 0]
[ tr ]P
k=0

e�(t�kr)
2kP
l=k

P
fx2Ik:p(x)=lg

x
�
(t�kr)l

l! z + (t�kr)(l+1)
(l+1)! w

�
: t � 0

(18)
where w =Mz.

PROOF. The uniqueness follows from the step method in Lemma 1. Also, by
Lemma 1, the solution is continuous. We shall prove the rest of the assertion by
induction that Z(t) in (10-11) and Y (t) in (18) coincide on the intervals [nr; (n +
1)r]; n = 0; 1; 2; : : :, where g in Lemma 1 is now given by g(t) := z1f0g(t); t 2 [�r; 0].
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Let n = 0. By Lemma 1, Z(0) = z and putting t = 0 in (18), Y (0) = z. Let now
t 2 (0; r), then by Lemma 1,

Z(t) = e�t(E + tM)z +Hz

tZ
0

e�(t�s)1f0g(s� r)ds

+(MH)z

tZ
0

sZ
0

e�(t�u)1f0g(u� r)duds

= e�t(z + tw):

Also, by (18), if t 2 (0; r), then Y (t) = e�t(z + tw). By Lemma 1, Z(r) = lim
t"r

e�t(z +

tw) = e�r(z + rw). If we set t = r in (18) then

Y (r) =
1X

k=0

e�(r�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

x

�
(r � kr)l

l!
z +

(r � kr)l+1
(l + 1)!

w

�
= e�r (z + rw) :

Therefore Z(t) = Y (t); t 2 [0; r]. Assume now that the formulas agree on [(n� 1)r; nr]
for n � 2, then for t 2 [(n� 1)r; nr] we have

Z(t) =
n�1X
k=0

e�(t�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

xF (t; k; l) = Y (t);

where F (t; k; l) := '(t; k; l)z + '(t; k; l + 1)w and ' is de�ned by '(t; k; l) := (t�kr)l
l! .

We will now show that for t 2 (nr; (n+ 1)r]; we have

Z(t) =
nX
k=0

e�(t�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

xF (t; k; l):

By assumption Z(nr) =
Pn�1

k=0 e
�(n�k)rP2k

l=k

P
fx2Ik:p(x)=lg

xF (nr; k; l): If s 2 (nr; (n+

1)r] then s � r 2 [(n � 1)r; nr]. Also, '(s � r; k; l) = '(s; (k + 1); l), hence for
s 2 (nr; (n+ 1)r];

Z(s� r) =
n�1X
k=0

e�(s�(k+1)r)
2kX
l=k

X
fx2Ik:p(x)=lg

xF (s; k + 1; l):

By Lemma 1, we then have that for t 2 (nr; (n+ 1)r),

Z(t) = e�(t�nr)(E + (t� nr)M)Z(nr) +H
tZ

nr

 (s; t)ds+ (MH)

tZ
nr

sZ
nr

 (u; t)duds
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= e�(t�nr)(E + (t� nr)M)
n�1X
k=0

e�(n�k)r
2kX
l=k

X
fx2Ik:p(x)=lg

xF (nr; k; l)

+H

tZ
nr

e�(t�s)
n�1X
k=0

e�(s�(k+1)r)
2kX
l=k

X
fx2Ik:p(x)=lg

xF (s; k + 1; l)ds

+(MH)

tZ
nr

sZ
nr

e�(t�u)
n�1X
k=0

e�(u�(k+1)r)
2kX
l=k

X
fx2Ik:p(x)=lg

xF (u; k + 1; l)duds:

Let G(t; k; l) :=
tR
nr

F (s; k + 1; l)ds and L(t; k; l) :=
tR
nr

sR
nr

F (u; k + 1; l)duds, then

Z(t) =
n�1X
k=0

e�(t�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

xF (nr; k; l)

+
n�1X
k=0

e�(t�kr)(t� nr)
2kX
l=k

X
fx2Ik:p(x)=lg

(Mx)F (nr; k; l)

+
n�1X
k=0

e�(t�(k+1)r)
2kX
l=k

X
fx2Ik:p(x)=lg

(Hx)G(t; k; l)

+

n�1X
k=0

e�(t�(k+1)r)
2kX
l=k

X
fx2Ik:p(x)=lg

((MH)x)L(t; k; l):

Since F (nr; 0; 0) = (z + nrw), fx 2 I0 : p(x) = 0g = E, Mz = w and Mw = 0 we have

Z(t) = e�t(z + nrw) +

n�1X
k=1

e�(t�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

xF (nr; k; l)

+e�t(t� nr)w +
n�1X
k=1

e�(t�kr)(t� nr)
2kX
l=k

X
fx2Ik:p(x)=lg

(Mx)F (nr; k; l)

+
nX
k=1

e�(t�kr)
2(k�1)X
l=k�1

X
fx2Ik�1:p(x)=lg

(Hx)G(t; k � 1; l)

+
nX
k=1

e�(t�kr)
2(k�1)X
l=k�1

X
fx2Ik�1:p(x)=lg

((MH)x)L(t; k � 1; l):

Using (17), the fact that Mx = 0 if x 2 Ik with p(x) = 2k, Remark 4 (ii) (a) and
Remark 4 (ii) (b), in this order, we have

Z(t) = e�t(z + tw) +
n�1X
k=1

e�(t�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

xF (nr; k; l)
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+
n�1X
k=1

e�(t�kr)(t� nr)
2k�1X
l=k

X
fx2I1k:p(x)=l+1g

xF (nr; k; l)

+
nX
k=1

e�(t�kr)
2(k�1)X
l=k�1

X
fx2I0k:p(x)=l+1g

xG(t; k � 1; l)

+
nX
k=1

e�(t�kr)
2(k�1)X
l=k�1

X
fx2I1k:p(x)=l+2g

xL(t; k � 1; l)

= e�t(z + tw) +
n�1X
k=1

e�(t�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

xF (nr; k; l)

+
n�1X
k=1

e�(t�kr)(t� nr)
2kX

l=k+1

X
fx2I1k:p(x)=lg

xF (nr; k; l � 1)

+
nX
k=1

e�(t�kr)
2k�1X
l=k

X
fx2I0k:p(x)=lg

xG(t; k � 1; l � 1)

+
nX
k=1

e�(t�kr)
2kX

l=k+1

X
fx2I1k:p(x)=lg

xL(t; k � 1; l � 2):

By Remark 3, fx 2 I1k : p(x) = kg = ; and fx 2 I0k : p(x) = 2kg = ;. If we de�neP
x2A

g(x) = 0 whenever A = ;, for any function g, then

Z(t) = e�t(z + tw) +

n�1X
k=1

e�(t�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

xF (nr; k; l)

+
n�1X
k=1

e�(t�kr)(t� nr)
2kX
l=k

X
fx2I1k:p(x)=lg

xF (nr; k; l � 1)

+
nX
k=1

e�(t�kr)
2kX
l=k

X
fx2I0k:p(x)=lg

xG(t; k � 1; l � 1)

+
nX
k=1

e�(t�kr)
2kX
l=k

X
fx2I1k:p(x)=lg

xL(t; k � 1; l � 2): (19)

Since
tR
nr

F (s; k; l)ds = F (t; k; l+ 1)� F (nr; k; l+ 1), G(t; k; l) = F (t; k + 1; l+ 1)�

F (nr; k+1; l+1) and L(t; k; l) = F (t; k+1; l+2)�F (nr; k+1; l+2)�(t�nr)F (nr; k+
1; l + 1). If we keep in mind that fx 2 Ik : p(x) = lg = fx 2 I0k : p(x) = lg [ fx 2 I1k :
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p(x) = lg and that F (nr; n; l) = 0 for all l = 1; 2; : : :, then

Z(t) = e�t(z + tw) +
n�1X
k=1

e�(t�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

xF (nr; k; l)

+
n�1X
k=1

e�(t�kr)(t� nr)
2kX
l=k

X
fx2I1k:p(x)=lg

xF (nr; k; l � 1)

+
nX
k=1

e�(t�kr)
2kX
l=k

X
fx2I0k:p(x)=lg

x(F (t; k; l)� F (nr; k; l))

+
nX
k=1

e�(t�kr)
2kX
l=k

X
fx2I1k:p(x)=lg

x(F (t; k; l)� F (nr; k; l)� (t� nr)F (nr; k; l � 1))

=
nX
k=0

e�(t�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

xF (t; k; l) = Y (t):

From this and (11),

Z((n+ 1)r) =

nX
k=0

e�((n+1)r�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

xF ((n+ 1)r; k; l):

Also

Y ((n+ 1)r) =
n+1X
k=0

e�((n+1)r�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

xF ((n+ 1)r; k; l)

=
nX
k=0

e�((n+1)r�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

xF ((n+ 1)r; k; l)

+

2(n+1)X
l=n+1

X
fx2In+1:p(x)=lg

xF ((n+ 1)r; n+ 1; l)

=

nX
k=0

e�((n+1)r�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

xF ((n+ 1)r; k; l) = Z((n+ 1)r):

Therefore Z(t) = Y (t); t 2 (nr; (n+ 1)r]. This completes the proof of the Lemma.
The notation we use in the following Theorem is the same as that used in Section

2.

THEOREM 1. The fundamental matrix associated with (5) is given by

G(t) :=

[ tr ]X
k=0

e�(t�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

QxQ�1
�
(t� kr)l

l!
E +

(t� kr)(l+1)
(l + 1)!

QMQ�1
�
(20)
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for t � 0:
PROOF. By Lemma 6 the solution of (8) with the initial condition Z(t) = z1f0g(t); t 2

[�r; 0]; z 2 R2, is given by

Z(t) =

[ tr ]X
k=0

e�(t�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

x

�
(t� kr)l

l!
z +

(t� kr)(l+1)
(l + 1)!

Mz

�
:

The solution of (8) with the initial condition Z(t) = Q�1�1f0g(t); t 2 [�r; 0]; � 2 R2
is therefore given by

Z(t) =

[ tr ]X
k=0

e�(t�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

x

�
(t� kr)l

l!
Q�1 +

(t� kr)(l+1)
(l + 1)!

Q�1QMQ�1
�
�:

Therefore

X(t) =

[ tr ]X
k=0

e�(t�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

QxQ�1
�
(t� kr)l

l!
E +

(t� kr)(l+1)
(l + 1)!

QMQ�1
�
�

solves (5) with the initial condition X(t) = �1f0g(t); t 2 [�r; 0]. This shows that the
fundamental matrix associated with (5) is given by (20).
From Theorem 1, we obtain the following Corollary which generalizes the formula

known in one dimension:

COROLLARY 2. If A is a diagonal matrix, i.e. � = 0, then the fundamental matrix

associated with (5) is given by G(t) =
P[ tr ]

k=0
Bk

k! (t� kr)
ke�(t�kr).

PROOF. Note �rst of all that if A is diagonal, i.e. � = 0, thenM = 0, (20) becomes

G(t) =

[ tr ]X
k=0

e�(t�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

QxQ�1
(t� kr)l

l!
:

Also,

fx 2 Ik : p(x) = lg =
�
fHkg : l = k;
f0g : l = k + 1; : : : ; 2k:

Hence G(t) =
P[ tr ]

k=0 e
�(t�kr)QHkQ�1 (t�kr)

k

k! =
P[ tr ]

k=0
Bk

k! (t � kr)ke�(t�kr). This com-
pletes the proof.

We shall now write a general solution for (5). For this purpose, we shall require
that the matrices A and B commute. In essence, it is a requirement that QMQ�1 and
B commute.

LEMMA 7. A and B commute if and only if QMQ�1 and B commute.

PROOF.

AB = BA () Q(�E +M)Q�1B = BQ(�E +M)Q�1
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() �B +QMQ�1B = B� +BQMQ�1

() QMQ�1B = BQMQ�1:

THEOREM 2. Let r > 0 and g : [�r; 0] ! R2 be integrable. If the matrices
QMQ�1 and B commute, then the solution X(t) to the equation (5), with the inte-
grable initial condition X(t) = g(t); t 2 [�r; 0]; is given by

X(t) :=

8<:
g(t) : t 2 [�r; 0]

G(t)g(0) +B
0R
�r
G(t� s� r)g(s)ds : t � 0 :

PROOF. From the de�nition of the fundamental matrix G, it satis�es
�G(t) = AG(t) + BG(t � r) for t � 0 and G(t) = E1f0g(t); t 2 [�r; 0]. For t � 0, an
application of a generalization of [1] Theorem 16.8 gives that Lebesgue a.e. on [0;1)

dX(t)

dt

=
dG(t)

dt
g(0) +B

d

dt

0Z
�r

G(t� s� r)g(s)ds

=
dG(t)

dt
g(0) +B

0Z
�r

@

@t
G(t� s� r)g(s)ds

= (AG(t) +BG(t� r))g(0) +B
0Z

�r

(AG(t� s� r) +BG((t� r)� s� r))g(s)ds

= (AG(t)g(0) +BA

0Z
�r

G(t� s� r)g(s)ds) +B(G(t� r)g(0)

+B

0Z
�r

G((t� r)� s� r)g(s)ds

= (AG(t)g(0) +AB

0Z
�r

G(t� s� r)g(s)ds) +B(G(t� r)g(0)

+B

0Z
�r

G((t� r)� s� r)g(s)ds

= A(G(t)g(0) +B

0Z
�r

G(t� s� r)g(s)ds) +B(G(t� r)g(0)
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+B

0Z
�r

G((t� r)� s� r)g(s)ds

= AX(t) +BX(t� r):

From the preceding Theorem, we obtain the following:

COROLLARY 3. If the matrix A is a diagonal matrix, then the solution to the
equation (5), with the integrable initial condition X(t) = g(t); t 2 [�r; 0]; is given by

X(t) :=

8<:
g(t) : t 2 [�r; 0];

G(t)g(0) +B
0R
�r
G(t� s� r)g(s)ds : t � 0:

PROOF. If A is a diagonal matrix, thenM = 0 and hence QMQ�1 and B commute.
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