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Abstract

It is widely believed that Sperner�s lemma and Brouwer�s �xed point theorem
are equivalent. But in second order arithmetic ([5]), although Sperner�s lemma is
proved in RCA0, Brouwer�s �xed point theorem is not. Also in Bishop style con-
structive mathematics, although Sperner�s lemma can be constructively proved,
Brouwer�s �xed point theorem can not be constructively proved. We consider an
approximate (or a constructive) version of Brouwer�s �xed point theorem, and
show the equivalence between Sperner�s lemma and an approximate version of
Brouwer�s �xed point theorem. We follow the Bishop style constructive mathe-
matics according to [1], [2] and [3].

1 Introduction

Brouwer�s �xed point theorem is extensively applied in economic theory and game
theory. It is widely believed that Sperner�s lemma and Brouwer�s �xed point theo-
rem are equivalent. But in second order arithmetic ([5]), although Sperner�s lemma is
proved in RCA0, Brouwer�s �xed point theorem is not. Also in Bishop style construc-
tive mathematics, although Sperner�s lemma can be constructively proved, Brouwer�s
�xed point theorem can not be constructively proved. Recently some authors have
presented an approximate (or a constructive) version of Brouwer�s �xed point theorem
using Sperner�s lemma. See [4] and [8]. We will show that Sperner�s lemma and an
approximate version of Brouwer�s �xed point theorem are equivalent. We follow the
Bishop style constructive mathematics according to [1], [2] and [3].

2 Approximate Version of Brouwer�s Theorem

Let p = (p0; p1; : : : ; pn) be a point in an n-dimensional simplex �, and consider a
function ' from � to itself. n is a �nite natural number. We de�ne uniform continuity
and approximate �xed point as follows.
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Uniform continuity of functions A function ' is uniformly continuous if for any
p, p0 and " > 0 there exists � > 0 such that

If jp0 � pj < �; then j'(p0)� '(p)j < ":

Approximate �xed point For each " p is an approximate (or an "-approximate)
�xed point of ' if

jp� '(p)j < ":

An approximate version of Brouwer�s �xed point theorem is as follows.

THEOREM 1. (Approximate version of Brouwer�s �xed point theorem) For each
" > 0 any uniformly continuous function from an n-dimensional simplex � to itself has
an approximate �xed point.

PROOF. See [4] or Theorem 6 in [8]1 .

3 From Approximate Version of Brouwer�s Theorem
to Sperner�s Lemma

Let us partition the simplex. Figure 1 is an example of partition (triangulation) of a
2-dimensional simplex. In a 2-dimensional case we divide each side of � in m equal
segments, and draw the lines parallel to the sides of�. Then, the 2-dimensional simplex
is partitioned into m2 triangles. We consider partition of � inductively for cases of
higher dimension. In a 3 dimensional case each face of � is a 2-dimensional simplex,
and so it is partitioned into m2 triangles in the above mentioned way, and draw the
planes parallel to the faces of �. Then, the 3-dimensional simplex is partitioned into
m3 trigonal pyramids. And similarly for cases of higher dimension.
LetK denote the set of small n-dimensional simplices of� constructed by partition.

Vertices of these small simplices ofK are labeled with the numbers 0, 1, 2, : : : , n subject
to the following rules.

1. The vertices of� are respectively labeled with 0 to n. We label a point (1; 0; : : : ; 0)
with 0, a point (0; 1; 0; : : : ; 0) with 1, a point (0; 0; 1 : : : ; 0) with 2, : : : , a point
(0; : : : ; 0; 1) with n. That is, a vertex whose k-th coordinate (k = 0; 1; : : : ; n) is 1
and all other coordinates are 0 is labeled with k.

2. If a vertex of K is contained in an n� 1-dimensional face of �, then this vertex
is labeled with some number which is the same as the number of a vertex of that
face.

3. If a vertex of K is contained in an n� 2-dimensional face of �, then this vertex
is labeled with some number which is the same as the number of a vertex of that
face. And similarly for cases of lower dimension.

1 [4] and [8] have shown the theorem for only a 2-dimensional case. But it can be extended to a
general n-dimensional case. In [6] and [7] we have constructively shown an approximate version of
Brouwer�s �xed point theorem for an n-dimensional simplex and other �xed point theorems.
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Figure 1: Partition and labeling of 2-dimensioanl simplex

4. A vertex contained in inside of � is labeled with an arbitrary number among 0,
1, : : : , n.

A small simplex of K which is labeled with the numbers 0, 1, : : : , n is called a fully
labeled simplex. Sperner�s lemma is as follows;

LEMMA 1. (Sperner�s lemma) If we label the vertices of K following above rules 1
� 4, then there exists at least one fully labeled simplex.
Now we show the following result.

THEOREM 2. Sperner�s lemma is derived from the approximate version of Brouwer�s
�xed point theorem.

PROOF. Denote vertices of an n-dimensional simplex of K by x0; x1; : : : ; xn, and
denote the j-th component of xi by xij . These vertices are labeled according to the
above rules 1 � 4. Denote the label of xi by l(xi). Let � be a positive number which
is smaller than xil(xi) for all x

i, and de�ne a function f(xi) as follows2 ;

f(xi) = (f0(x
i); f1(x

i); : : : ; fn(x
i));

and

fj(x
i) =

�
xij � � for j = l(xi);
xij +

�
n for j 6= l(xi): (1)

fj denotes the j-th component of f . From the labeling rules xil(xi) > 0 for all x
i, and

so � > 0 is well de�ned. Since
Pn

j=0 fj(x
i) =

Pn
j=0 x

i
j = 1, we have

f(xi) 2 �:
2We refer to [9] about the de�nition of this function.
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We extend f to all points in the simplex by convex combinations of its values on the
vertices of the simplex. Let z be a point in the n-dimensional simplex of K whose
vertices are x0; x1; : : : ; xn. Then, z and f(z) are represented as follows;

z =
nX
i=0

�ix
i; and f(z) =

nX
i=0

�if(x
i); �i � 0;

nX
i=0

�i = 1:

Let us show that f is uniformly continuous. Let z and z0 be distinct points in the same
small n-dimensional simplex of K. They are represented as

z =
nX
i=0

�ix
i; z0 =

nX
i=0

�0ix
i;

and so

z � z0 =
nX
i=0

(�i � �0i)xi and zj � z0j =
nX
i=0

(�i � �0i)xij for each j:

Then, we have

f(z)� f(z0) =
nX
i=0

(�i � �0i)f(xi)

and for each j

fj(z)� fj(z0) =
nX
i=0

(�i � �0i)xij +
X

i:j 6=l(i)

(�i � �0i)
�

n
�

X
i:j=l(i)

(�i � �0i)�

= zj � z0j +
X

i:j 6=l(i)

(�i � �0i)
�

n
�

X
i:j=l(i)

(�i � �0i)�

Since � is �nite, appropriately selecting �0i given �i for each i we can make jfj(z) �
fj(z

0)j su¢ ciently small corresponding to the value of jzj � z0j j for each j, and so
make jf(z) � f(z0)j su¢ ciently small corresponding to the value of jz � z0j. Thus, f
is uniformly continuous, and then by the approximate version of Brouwer�s �xed point
theorem there exists a point z� such that

jz� � f(z�)j < "

for any " > 0. Then, we obtain

jz�i � fi(z�)j < " for all i:

Let 
 > 0 and ~z be a point in V (z�; 
), where V (z�; 
) is a 
-neighborhood of z�.
If 
 is su¢ ciently small, uniform continuity of f means

j~zi � fi(~z)j < " (2)

for any " > 0 and for all i. ~zi is the i-th component of ~z. Let �� be a simplex of K
which contains ~z.
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We cannot constructively determine which small simplex in K contains z�.
But we can constructively determine which small simplex has an intersec-
tion with V (z�; 
), or we may consider that if 
 is su¢ ciently small, all
points in V (z�; 
) are approximate �xed points.

Let z0; z1; : : : ; zn be the vertices of ��. Then, ~z and f(~z) are represented as

~z =
nX
i=0

�iz
i and f(~z) =

nX
i=0

�if(z
i); �i � 0;

nX
i=0

�i = 1:

(1) implies that if only one zk among z0; z1; : : : ; zn is labeled with i, we have

jfi(~z)� ~zij =

������
nX
j=0

�jz
j
i +

nX
j=0;j 6=k

�j
�

n
� �k� � z�i

������ =
������
0@ 1
n

nX
j=0;j 6=k

�j � �k

1A �
������ < ":

Since " may be arbitrarily small and � > 0, this means

1

n

nX
j=0;j 6=k

�j � �k � 0:

(2) is satis�ed with �k � 1
n+1 for all k. On the other hand if no z

j is labeled with i,
we have

fi(~z) =

nX
j=0

�jz
j
i = ~zi + (1 +

1

n
)� ;

and then (2) can not be satis�ed. Thus, for each i one and only one zj must be labeled
with i. Therefore, �� must be a fully labeled simplex.
We have completed the proof of Sperner�s lemma by the approximate version of

Brouwer�s �xed point theorem.

Sperner�s lemma alone is not su¢ cient to prove Brouwer�s �xed point theorem. We
need some non-constructive arguments. But Sperner�s lemma is su¢ cient to construc-
tively prove an approximate version of Brouwer�s �xed point theorem. And conversely
an approximate version of Brouwer�s �xed point theorem is su¢ cient to prove Sperner�s
lemma.
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