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Abstract

The �rst Zagreb index M1(G) and the second Zagreb index M2(G) of a (mole-
cular) graph G are M1(G) =

P
u2V (G)

(d(u))2 and M2(G) =
P

uv2E(G)
d(u)d(v) re-

spectively, where d(u) denotes the degree of a vertex u in G. In [3] and [4], Feng
et al. obtained the sharp bounds of M1(G) and M2(G) on the graphs with cut
edges and characterized the extremal graphs. However, the proof in [3] was rather
complicated. In this paper, we give a simple proof on these results.

1 Introduction

A molecular graph is a representation of the structural formula of a chemical compound
in terms of graph theory, whose vertices correspond to the atoms of the compound and
edges correspond to chemical bonds. For a (molecular) graph G, the �rst Zagreb index
M1(G) and the second Zagreb index M2(G) are de�ned in [5] as

M1(G) =
X

u2V (G)

(d(u))2; M2(G) =
X

uv2E(G)

d(u)d(v);

where d(u) denotes the degree of the vertex u of G.

A cut edge in a connected graph is an edge whose deletion breaks the graph into
two components. Denote by Gkn the set of graphs with n vertices and k cut edges. The
graph Kk

n is a graph obtained by joining k independent vertices to one vertex of Kn�k.
The graph P kn is a graph obtained by attaching a pendent chain Pk+1 to one vertex of
Cn�k. For example, graphs K3

7 and P
3
7 are shown in Fig.1.
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Fig.1 Graphs K3
7 and P

3
7

If G 2 Gkn and n = k+1, then G is a tree. The sharp bounds of M1(G) and M2(G)
on trees has been studied in [2]. Therefore, from now on, we may assume n > k + 1.
In [3] and [4], Feng et al. obtained the following results:

THEOREM 1. Let G 2 Gkn, then

4n+ 2 �M1(G) � (n� k � 1)3 + (n� 1)2 + k;

with the left equality if and only if G �= P kn , with the right equality if and only if
G �= Kk

n.

THEOREM 2. Let G 2 Gkn, then

4n+ 4 �M2(G) �
1

2
(n� k � 1)3(n� k � 2) + [(n� k � 1)2 + k](n� 1);

the left equality holds if and only if G �= P kn and the right equality holds if and only if
G �= Kk

n.

The proof of the above results was rather complicated in [3]. In this paper, we give
a simple proof of the results.
First we introduce some graph notations used in this paper. We denote the mini-

mum degrees of vertices of G by �(G). A tree is a connected acyclic graph. The star
Sn is a tree on n vertices with one vertex having degree n � 1 and the other vertices
having degree 1. The vertex with degree one is called a leaf.
A connected graph that has no cut vertices is called a block. If a block is an unique

vertex, then it is called trivial block. Every block with at least three vertices is 2-
connected. A block of a graph is a subgraph that is a block and is maximal with
respect to this property. An edge e of G is said to be contracted if it is deleted and
its ends are identi�ed. If G has blocks B1; B2; : : : ; Br, all the edges in the blocks
are contracted, then the resulting graph is called block graph of G, in which a vertex
corresponds to a block of G and an edge corresponds to a cut edge of G, denoted by
B(G). It is easy to see that B(G) is a tree. Therefore, if G 2 Gkn, then B(G) is a tree
with k edges. In B(G), if each neighbor of a block is not a trivial block, then the block
is called naked block ; if a block is both naked block and a leaf in B(G), we call the
block leaf block.

Remark: Note that the vertex in each block which is incident with a cut edge is a cut
vertex of G, i.e., each block contains at least one cut vertex of G.
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2 Proof of Theorem 1

Denote

Gkn = fG 2 Gkn :M1(G) is maximumg

Gkn = fG 2 Gkn :M1(G) is minimumg

LEMMA 1. If G 2 Gkn, then each block of G is either a vertex or a complete graph
with at least three vertices.

PROOF. Let Bi be a block of G. If jBij = 1, then Bi is a vertex. If jBij > 1, since
Bi is block, we have �(Bi) � 2. So we have jBij � 3. Since M1(G) is maximum, we
have that Bi is a complete graph.

LEMMA 2. If G 2 Gkn, then G has an unique block which is a complete graph with
at least three vertices.

PROOF. By Lemma 1, we have that each block of G is either a vertex or a complete
graph with at least three vertices. If G has blocks B1; B2; : : : ; Bp (p � 2) which are
complete vertices with at least three vertices.

If there exists two blocks in fB1; B2; : : : ; Bpg are not naked block, without loss of
generality, we may assume that B1 and B2 are not naked block. Then there exist
a leaf x adjacent to B1 and a leaf y adjacent to B2. Let V (B1) = fu1; u2; : : : ; usg,
V (B2) = fv1; v2; : : : ; vtg (s; t � 3). Without loss of generality, we may assume that u1
and v1 are vertices adjacent to x and y respectively in G and dG(u1) � dG(v1). Let
G0 = G� yv1 + yu1. We have G0 2 Gkn. However,

M1(G
0)�M1(G) = d2G0(u1) + d

2
G0(v1)� d2G(u1)� d2G(v1)

= [dG(u1) + 1]
2 + [dG(v1)� 1]2 � d2G(u1)� d2G(v1)

= 2(dG(u1)� dG(v1)) + 2
> 0;

a contradiction.

Otherwise at most one of fB1; B2; : : : ; Bpg is not naked block. Then there exists
leaf block in fB1; B2; : : : ; Bpg. Without loss of generality, we may assume that Bp is
leaf block. Let V (Bp) = fw1; w2; : : : ; w`g, V (Bp�1) = fz1; z2; : : : ; zqg (`; q � 3), w1 be
the unique cut vertex of G in V (Bp) (Note that dG(w1) = `).

We delete the edges fw1w2; w1w3; : : : ; w1w`g in Bp and let fz1; z2; : : : ; zq; w2; w3;
: : : ; w`g be a complete graph; the resulting graph is denoted by G00. It is easy to have



L. L. Sun 235

G00 2 Gkn. However,

M1(G
00)�M1(G) =

X̀
i=1

d2G00(wi) +

qX
j=1

d2G00(zj)�
X̀
i=1

d2G(wi)�
qX
j=1

d2G(zj)

= 1 +
X̀
i=2

[dG(wi)� 1 + q]2 +
qX
j=1

[dG(zj) + `� 1]2

�
X̀
i=1

d2G(wi)�
qX
j=1

d2G(zj)

= 1 + (`� 1)(q � 1)2 + 2(q � 1)
X̀
i=2

dG(wi) + q(`� 1)2

+2(`� 1)
qX
j=1

d(vj)� `2 (`; q � 3)

> 0;

a contradiction. This completes the proof.

LEMMA 3. If G 2 Gkn, then B(G) is a star and the maximum vertex corresponds
to the unique block, which is a complete graph with at least three vertices.

PROOF. Let B1; B2; : : : ; Br be the blocks of G and b1; b2; : : : ; br be the corre-
sponding vertices in B(G). By Lemma 1 and Lemma 2, only one of B1; B2; : : : ; Br
is a complete graph with at least three vertices. Without loss of generality, let Br
be the block which is a complete graph, V (Br) = fu1; u2; : : : ; usg (s � 3). Then Bi
(i = 1; 2; : : : ; r � 1) is a vertex, i.e., bi = Bi (i = 1; 2; : : : ; r � 1) in B(G).
Without loss of generality, we may assume that u1 is an arbitrary cut vertex of

G in Br and u1b1 2 E(G) (Note that dG(u1) � 3). If b1 is not an isolated vertex
in B(G), then let NG(b1) = fu1; b2; : : : ; btg (t � 2). Let G0 = G � fb1b2; : : : ; b1btg +
fu1b2; : : : ; u1btg. It is easy to see G0 2 Gkn. However,

M1(G
0)�M1(G) = d2G0(u1) + d

2
G0(b1)� d2G(u1)� d2G(b1)

= [dG(u1) + t� 1]2 + 1� d2G(u1)� t2

= 2(t� 1)[dG(u1)� 1]
> 0;

a contradiction. Therefore, b1 is an isolated vertex in B(G).
Since u1 is an arbitrary cut vertex of G in Br, we have that all the vertices adjacent

to br are isolated vertices in B(G). Therefore, B(G) is a star and the maximum vertex
corresponds to the unique block, which is a complete graph with at least three vertices.

LEMMA 4. If G 2 Gkn, then G �= Kk
n.

PROOF. By Lemma 3, B(G) is a star and the maximum vertex corresponds to the
unique block, which is a complete graph with at least three vertices. Let V (B(G)) =
fb1; b2; : : : ; brg and br be the vertex with maximum degrees. Let u1; u2 be the neighbors
of b1; b2 in G, respectively, and dG(u1) � dG(u2).
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If u1 6= u2, let G0 = G� u2b2 + u1b2. Then G0 2 Gkn. However,

M1(G
0)�M1(G) = d2G0(u1) + d

2
G0(u2)� d2G(u1)� d2G(u2)

= [dG(u1) + 1]
2 + [dG(u2)� 1]2 � d2G(u1)� d2G(u2)

= 2[dG(u1)� dG(u2)] + 2
> 0;

a contradiction. Therefore, u1 = u2.
Since b1 and b2 are arbitrary, we have that the neighbors of fb1; b2; : : : ; br�1g are

the same. Therefore, G �= Kk
n.

LEMMA 5. If G 2 Gkn, then each block of G is either a vertex or a cycle with at
least three vertices.

PROOF. Let Bi be a block of G. If jBij = 1, then Bi is a vertex. If jBij > 1, since
Bi is block, we have �(Bi) � 2. So we have jBij � 3. Since M1(G) is minimum, we
have that Bi is a cycle.

LEMMA 6. If G 2 Gkn, then G has an unique block which is a cycle with at least
three vertices.

PROOF. By Lemma 5, we have that each block of G is either a vertex or a cycle
with at least three vertices. If G has blocks B1 and B2 which are cycles with at least
three vertices, let V (B1) = fu1; u2; : : : ; usg, V (B2) = fv1; v2; : : : ; vtg (s; t � 3), u1 and
v1 be cut vertices in G (Note that dG(u1) � 3). We delete all the edges in B1, B2 and
let fv1; v2; : : : ; vt; u2; u3; : : : ; usg be a cycle; the resulting graph is denoted by G0. It is
easy to see G0 2 Gkn. However,

M1(G
0)�M1(G) = d2G0(u1)� d2G(u1)

= [dG(u1)� 2]2 � d2G(u1)
< 0;

a contradiction.

LEMMA 7. If G 2 Gkn, then G �= P kn .
PROOF. Let B1; B2; : : : ; Br be the blocks of G and b1; b2; : : : ; br be the correspond-

ing vertices in B(G). By Lemma 5 and Lemma 6, only one of fB1; B2; : : : ; Brg is a
cycle with at least three vertices. Without loss of generality, let B1 be the block which
is a cycle, V (B1) = fu1; u2; : : : ; usg (s � 3). Then Bi (i = 2; 3; : : : ; r) is a vertex, i.e.,
bi = Bi (i = 2; 3; : : : ; r) in B(G). Now we prove dB(G)(b1) = 1 and dB(G)(bi) � 2
(2 � i � r).
If dB(G)(b1) � 2, let bi be a neighbor of b1 and Biuj 2 E(G) (2 � i � r; 1 �

j � s)(Note that dG(uj) � 3). Since B(G) is tree, without loss of generality, we may
assume that bt is a leaf of B(G) (2 � t � r; t 6= i). Let G0 = G � Biuj + BtBi, then
G0 2 Gkn. However,

M1(G
0)�M1(G) = d2G0(uj) + d

2
G0(Bt)� d2G(uj)� d2G(Bt)

= [dG(uj)� 1]2 + 4� d2G(uj)� 1
= �2dG(uj) + 4
< 0;
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a contradiction. Therefore, dB(G)(b1) = 1.
Since B(G) is a tree and a tree has at least two leaves, without loss of generality,

we may assume that b2 is a leaf of B(G). If there exist bi such that dB(G)(bi) � 3
(3 � i � r)(Note that dB(G)(bi) = dG(Bi)). Let bj be a neighbor of bi in B(G)
(3 � j � r). Let G00 = G�BiBj +B2Bj , then G00 2 Gkn. However,

M1(G
00)�M1(G) = d2G00(Bi) + d

2
G00(B2)� d2G(Bi)� d2G(B2)

= [dG(Bi)� 1]2 + 4� d2G(Bi)� 1
= �2dG(Bi) + 4
< 0;

a contradiction. Therefore, dB(G)(bi) � 2 (2 � i � r).
Since dB(G)(b1) = 1 and dB(G)(bi) � 2 (2 � i � r), we have G �= P kn .
PROOF of THEOREM 1. By Lemma 4, we have G �= Kk

n if G 2 Gkn. Moreover,
M1(K

k
n) = (n� k � 1)3 + (n� 1)2 + k.

By Lemma 7, we have G �= P kn if G 2 Gkn. Moreover, M1(P
k
n ) = 4n+ 2. Therefore,

4n+ 2 �M1(G) � (n� k � 1)3 + (n� 1)2 + k;

with the left equality if and only if G �= P kn , with the right equality if and only if
G �= Kk

n.

REMARK. In fact, we can give a simple proof of Theorem 2 in a similar way.
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