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Abstract

The first Zagreb index M;(G) and the second Zagreb index Mz (G) of a (mole-

cular) graph G are M1(G) = > (d(u))? and Mx(G) = > d(u)d(v) re-
uweV(Q) uwveE(G)

spectively, where d(u) denotes the degree of a vertex w in G. In [3] and [4], Feng

et al. obtained the sharp bounds of M;(G) and M2(G) on the graphs with cut

edges and characterized the extremal graphs. However, the proof in [3] was rather
complicated. In this paper, we give a simple proof on these results.

1 Introduction

A molecular graph is a representation of the structural formula of a chemical compound
in terms of graph theory, whose vertices correspond to the atoms of the compound and
edges correspond to chemical bonds. For a (molecular) graph G, the first Zagreb index
M;(G) and the second Zagreb index M>(G) are defined in [5] as

Mi(G)= Y (dw)? My(G)= Y du)d(v),

ueV(QG) weE(Q)

where d(u) denotes the degree of the vertex u of G.

A cut edge in a connected graph is an edge whose deletion breaks the graph into
two components. Denote by G¥ the set of graphs with n vertices and k cut edges. The
graph KF is a graph obtained by joining k independent vertices to one vertex of K, _j.
The graph PF is a graph obtained by attaching a pendent chain P to one vertex of
C—. For example, graphs K3 and P? are shown in Fig.1.
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Fig.1 Graphs K2 and P?

If G € GF and n = k+ 1, then G is a tree. The sharp bounds of M;(G) and M(G)
on trees has been studied in [2]. Therefore, from now on, we may assume n > k + 1.
In [3] and [4], Feng et al. obtained the following results:

THEOREM 1. Let G € G*, then

dn+2<M(G)< (n—k—1P24(n—1)2+k,
with the left equality if and only if G = P* with the right equality if and only if
G = Kk,
THEOREM 2. Let G € G, then

n?

In+4<My(G)< =(n—k—=13n—-k—-2)+[(n—k—12+Ek(n-1),

N =

the left equality holds if and only if G 22 P* and the right equality holds if and only if
G = Kk,

The proof of the above results was rather complicated in [3]. In this paper, we give
a simple proof of the results.

First we introduce some graph notations used in this paper. We denote the mini-
mum degrees of vertices of G by 6(G). A tree is a connected acyclic graph. The star
S, is a tree on n vertices with one vertex having degree n — 1 and the other vertices
having degree 1. The vertex with degree one is called a leaf.

A connected graph that has no cut vertices is called a block. If a block is an unique
vertex, then it is called trivial block. Every block with at least three vertices is 2-
connected. A block of a graph is a subgraph that is a block and is maximal with
respect to this property. An edge e of G is said to be contracted if it is deleted and
its ends are identified. If G has blocks By, Bs, ..., B,, all the edges in the blocks
are contracted, then the resulting graph is called block graph of G, in which a vertex
corresponds to a block of G and an edge corresponds to a cut edge of GG, denoted by
B(G). Tt is easy to see that B(G) is a tree. Therefore, if G € G¥, then B(G) is a tree
with k edges. In B(G), if each neighbor of a block is not a trivial block, then the block
is called naked block; if a block is both naked block and a leaf in B(G), we call the
block leaf block.

Remark: Note that the vertex in each block which is incident with a cut edge is a cut
vertex of G, i.e., each block contains at least one cut vertex of G.
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2 Proof of Theorem 1

Denote

gT’i ={Ge g,’§ : M1 (G) is maximum}

% ={G € GF: My(G) is minimum}

LEMMA 1. If G € QTCL, then each block of G is either a vertex or a complete graph
with at least three vertices.

PROOF. Let B; be a block of G. If |B;| = 1, then B; is a vertex. If |B;| > 1, since
B, is block, we have §(B;) > 2. So we have |B;| > 3. Since M;(G) is maximum, we
have that B; is a complete graph.

LEMMA 2. If G € Qj’j, then G has an unique block which is a complete graph with
at least three vertices.

PROOF. By Lemma 1, we have that each block of G is either a vertex or a complete
graph with at least three vertices. If G has blocks By, Bs,..., B, (p > 2) which are
complete vertices with at least three vertices.

If there exists two blocks in {B, Bs,. .., B,} are not naked block, without loss of
generality, we may assume that B; and By are not naked block. Then there exist
a leaf = adjacent to B; and a leaf y adjacent to Bs. Let V(By) = {uy,uz,...,us},
V(Bs) = {v1,v9,...,v:} (8,8 > 3). Without loss of generality, we may assume that u;
and vy are vertices adjacent to x and y respectively in G and dg(u1) > dg(v1). Let
G' = G — yv; +yuy. We have G’ € GF. However,

M(G') = My(G) = dgi(ur) + dgi(v1) — dg;(ur) — dg;(v1)
= [de(ur) +11* + [da(v1) = 1]* = dg(ur) — dg(v1)
= 2(dg(w1) —dg(v1)) +2
> 0,

a contradiction.

Otherwise at most one of {B1, Ba,..., By} is not naked block. Then there exists
leaf block in {B1, Bs,...,By}. Without loss of generality, we may assume that B, is
leaf block. Let V(By) = {w1,wa, ..., we}, V(Bp_1) = {z1,22,...,2¢} ({,¢ > 3), wq be
the unique cut vertex of G in V(B,) (Note that dg(w1) = £).

We delete the edges {wiws, wiws,...,wiwe} in By, and let {21, 22, ..., 24, w2, ws,
...,wg} be a complete graph; the resulting graph is denoted by G”. Tt is easy to have
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" k
G" € G;. However,

4 q Y q
M(G") = My(G) = > dgu(w)+ > dgn(z) = > dg(w) =Y dg(z)
¢ q
= 14+ lda(w) —1+q*+> [da(z) +£—1]
=2 j=1
¢ q
=D d(w) = D (z)

= 1+(-1)(g—1)>+2(q— 1) dg(w;) +q(f —1)°
7=2

+2(0—1) Y d(v;) — > (£,¢>3)
> 0, "

a contradiction. This completes the proof.

LEMMA 3. If G € GF, then B(G) is a star and the maximum vertex corresponds
to the unique block, which is a complete graph with at least three vertices.

PROOF. Let Bj, Bs,...,B, be the blocks of G and by,bs,...,b. be the corre-
sponding vertices in B(G). By Lemma 1 and Lemma 2, only one of By, Bs,..., B,
is a complete graph with at least three vertices. Without loss of generality, let B,
be the block which is a complete graph, V(B,) = {u1,us,...,us} (s > 3). Then B;
(i=1,2,...,r—1)is a vertex, i.e., b = B; (i=1,2,...,r — 1) in B(G).

Without loss of generality, we may assume that w; is an arbitrary cut vertex of
G in B, and u1b; € E(G) (Note that dg(ui) > 3). If by is not an isolated vertex
in B(G), then let Ng(bl) = {ul,bg,. . .,bt} (t > 2). Let G' = G — {blbg,. .. ,b1bt} +
{uba, ..., u1b}. It is easy to see G’ € G. However,

M(G') = My(G) = dgi(ur) + dgi(br) — d(u1) — dg(by)
[de(u1) +t =12+ 1 —d&(w) — #*
= 2(t - D[de(ur) — 1]

> 0,

a contradiction. Therefore, by is an isolated vertex in B(G).

Since w1 is an arbitrary cut vertex of G in B,., we have that all the vertices adjacent
to b, are isolated vertices in B(G). Therefore, B(G) is a star and the maximum vertex
corresponds to the unique block, which is a complete graph with at least three vertices.

LEMMA 4. If G € GF, then G = KF.

PROOF. By Lemma 3, B(G) is a star and the maximum vertex corresponds to the
unique block, which is a complete graph with at least three vertices. Let V(B(G)) =
{b1,ba,...,b.} and b, be the vertex with maximum degrees. Let uj, us be the neighbors
of by, be in G, respectively, and dg(u1) > dg(ug).
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If uy # ug, let G’ = G — ugby + u1by. Then G’ € GF. However,
My(G') = My(G) = dgi(ur) + dg(uz) — dg(ur) — dg;(uz)
= [da(ur) + 11 + [de(uz) — 1% — dg; (1) — dg(ug)
= Q[dg(ul) —dg(UQ)] +2
> 0,

a contradiction. Therefore, u; = us.

Since by and by are arbitrary, we have that the neighbors of {by,bs,...,b._1} are
the same. Therefore, G = KF.

LEMMA 5. If G € g,’i, then each block of G is either a vertex or a cycle with at
least three vertices.

PROOF. Let B; be a block of G. If | B;| = 1, then B; is a vertex. If |B;| > 1, since
B, is block, we have §(B;) > 2. So we have |B;| > 3. Since M;(G) is minimum, we
have that B; is a cycle.

LEMMA 6. If G € G, then G has an unique block which is a cycle with at least
three vertices. o

PROOF. By Lemma 5, we have that each block of G is either a vertex or a cycle
with at least three vertices. If G has blocks By and By which are cycles with at least
three vertices, let V(B1) = {u1, ua,...,us}, V(Bz2) = {v1,v2,...,v¢} (s,t > 3), ug and
vy be cut vertices in G (Note that dg(u;) > 3). We delete all the edges in By, By and
let {v1,v2,...,0¢,us, us,...,us} be a cycle; the resulting graph is denoted by G'. Tt is
easy to see G’ € G*. However,

M(G") = My(G) = dg(w1) —dg(u)
= [de(u1) = 2)* — d(ur)
< 0,

a contradiction.
LEMMA 7. If G € G}, then G = P}.

PROOF. Let By, By, ..., B, be the blocks of G and by, bs, ..., b, be the correspond-
ing vertices in B(G). By Lemma 5 and Lemma 6, only one of {B;, Bs,...,B.} is a
cycle with at least three vertices. Without loss of generality, let By be the block which
is a cycle, V(By) = {u1,ua,...,us}t (s >3). Then B; (i =2,3,...,r) is a vertex, i.e.,
bi = Bl (l = 2,3,...,?") in B(G) Now we prove dB(G)(bl) =1 and dB(G)(bl) S 2
2<i<r).

If dpg)(b1) > 2, let b; be a neighbor of b and Biu; € E(G) (2 < i <71 <
J < s)(Note that dg(u;) > 3). Since B(G) is tree, without loss of generality, we may
assume that b, is a leaf of B(G) (2 <t <t #1i). Let G = G — B;u; + BB, then
G' € GF. However,

Mi(G) = Mi(G) = dg(uj) + dg(Br) — d(u;) — dg(By)
= lde(u;) =1 +4 = dg(uy) -1

< 0,
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a contradiction. Therefore, dp(g)(b1) = 1.

Since B(G) is a tree and a tree has at least two leaves, without loss of generality,
we may assume that bo is a leaf of B(G). If there exist b; such that dpg)(bi) > 3
(3 < i < r)(Note that dp)(b;) = dg(B;)). Let b; be a neighbor of b; in B(G)
(3<j<r). Let " =G — B;Bj + B2Bj, then G” € GF. However,

M(G") = Mi(G) = dg(Bi)+ dgn(Bs) — d3(B;) — dg(By)
= [da(Bi) —1]* +4 - d3(B;) — 1
= —2dg(B;)+4
< 0,

a contradiction. Therefore, dpg)(bi) <2 (2 <i < 7).

Since dp(gy(b1) = 1 and dp(g)(b;) <2 (2 <i <r), we have G = Pk,

PROOF of THEOREM 1. By Lemma 4, we have G = K* if G € QTj Moreover,
M (KE)y=(n—-k—-12+(n—-1)?2+k.

By Lemma 7, we have G = P¥ if G € Gr. Moreover, My (Py) = 4n + 2. Therefore,

dn+2<M(G)<(n—k—1P°4+(n—1)2+k,
with the left equality if and only if G = P¥ with the right equality if and only if
G = Kk,
REMARK. In fact, we can give a simple proof of Theorem 2 in a similar way.
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